Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Pain ; 24(1): 68-83, 2023 01.
Article in English | MEDLINE | ID: mdl-36087908

ABSTRACT

Neuropathic pain (NP) is a challenging condition to treat, as the need for new drugs to treat NP is an unmet goal. We investigated the analgesic potential of a new sulfated disaccharide compound, named BIS014. Oral administration (p.o.) of this compound induced ameliorative effects in formalin-induced nociception and capsaicin-induced secondary mechanical hypersensitivity in mice, but also after partial sciatic nerve transection (spared nerve injury), chemotherapy (paclitaxel)-induced NP, and diabetic neuropathy induced by streptozotocin. Importantly, BIS014, at doses active on neuropathic hypersensitivity (60 mg/kg/p.o.), did not alter exploratory activity or motor coordination (in the rotarod test), unlike a standard dose of gabapentin (40 mg/kg/p.o.) which although inducing antiallodynic effects on the NP models, it also markedly decreased exploration and motor coordination. In docking and molecular dynamic simulation studies, BIS014 interacted with TRPV1, a receptor involved in pain transmission where it behaved as a partial agonist. Additionally, similar to capsaicin, BIS014 increased cytosolic Ca2+ concentration ([Ca2+]c) in neuroblastoma cells expressing TRPV1 receptors; these elevations were blocked by ruthenium red. BIS014 did not block capsaicin-elicited [Ca2+]c transients, but inhibited the increase in the firing rate of action potentials in bradykinin-sensitized dorsal root ganglion neurons stimulated with capsaicin. Perspective: We report that the oral administration of a new sulfated disaccharide compound, named BIS014, decreases neuropathic pain from diverse etiology in mice. Unlike the comparator gabapentin, BIS014 does not induce sedation. Thus, BIS014 has the potential to become a new efficacious non-sedative oral medication for the treatment of neuropathic pain.


Subject(s)
Capsaicin , Neuralgia , Mice , Animals , Capsaicin/adverse effects , Hyaluronic Acid/pharmacology , Gabapentin , TRPV Cation Channels , Hyperalgesia/drug therapy
2.
Nutrients ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36615804

ABSTRACT

Exclusive breastfeeding is recommended for the first six months of life to promote adequate infant growth and development, and to reduce infant morbidity and mortality. However, whenever some mothers are not able to breastfeed their infants, infant formulas mimicking human milk are needed, and the safety and efficacy of each formula should be tested. Here, we report the results of a multicenter, randomized, blinded, controlled clinical trial that aimed to evaluate a novel starting formula on weight gain and body composition of infants up to 6 and 12 months, as well as safety and tolerability. For the intervention period, infants were divided into three groups: group 1 received formula 1 (Nutribén® Innova 1 (Alter Farmacia S.A., Madrid, Spain) or INN (n = 70)), with a lower amount of protein, a lower casein to whey protein ratio by increasing the content of α-lactalbumin, and a double amount of docosahexaenoic acid/arachidonic acid than the standard formula; it also contained a thermally inactivated postbiotic (Bifidobacterium animalis subsp. lactis, BPL1TM HT). Group 2 received the standard formula or formula 2 (Nutriben® Natal (Alter Farmacia S.A., Madrid, Spain) or STD (n = 70)) and the third group was exclusively breastfed for exploratory analysis and used as a reference (BFD group (n = 70)). During the study, visits were made at 21 days and 2, 4, 6, and 12 months of age. Weight gain was higher in both formula groups than in the BFD group at 6 and 12 months, whereas no differences were found between STD and INN groups either at 6 or at 12 months. Likewise, body mass index was higher in infants fed the two formulas compared with the BFD group. Regarding body composition, length, head circumference and tricipital/subscapular skinfolds were alike between groups. The INN formula was considered safe as weight gain and body composition were within the normal limits, according to WHO standards. The BFD group exhibited more liquid consistency in the stools compared to both formula groups. All groups showed similar digestive tolerance and infant behavior. However, a higher frequency of gastrointestinal symptoms was reported by the STD formula group (n = 291), followed by the INN formula (n = 282), and the BFD groups (n = 227). There were fewer respiratory, thoracic, and mediastinal disorders among BFD children. Additionally, infants receiving the INN formula experienced significantly fewer general disorders and disturbances than those receiving the STD formula. Indeed, atopic dermatitis, bronchitis, and bronchiolitis were significantly more prevalent among infants who were fed the STD formula compared to those fed the INN formula or breastfed. To evaluate whether there were significant differences between formula treatments, beyond growth parameters, it would seem necessary to examine more precise health biomarkers and to carry out long-term longitudinal studies.


Subject(s)
Infant Formula , Sexually Transmitted Diseases , Female , Child , Humans , Infant , Breast Feeding , Weight Gain , Body Composition
3.
JMIR Public Health Surveill ; 6(3): e21653, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32845852

ABSTRACT

BACKGROUND: Hospital workers have been the most frequently and severely affected professional group during the COVID-19 pandemic, and have a big impact on transmission. In this context, innovative tools are required to measure the symptoms compatible with COVID-19, the spread of infection, and testing capabilities within hospitals in real time. OBJECTIVE: We aimed to develop and test an effective and user-friendly tool to identify and track symptoms compatible with COVID-19 in hospital workers. METHODS: We developed and pilot tested Hospital Epidemics Tracker (HEpiTracker), a newly designed app to track the spread of COVID-19 among hospital workers. Hospital staff in 9 hospital centers across 5 Spanish regions (Andalusia, Balearics, Catalonia, Galicia, and Madrid) were invited to download the app on their phones and to register their daily body temperature, COVID-19-compatible symptoms, and general health score, as well as any polymerase chain reaction and serological test results. RESULTS: A total of 477 hospital staff participated in the study between April 8 and June 2, 2020. Of note, both health-related (n=329) and non-health-related (n=148) professionals participated in the study; over two-thirds of participants (68.8%) were health workers (43.4% physicians and 25.4% nurses), while the proportion of non-health-related workers by center ranged from 40% to 85%. Most participants were female (n=323, 67.5%), with a mean age of 45.4 years (SD 10.6). Regarding smoking habits, 13.0% and 34.2% of participants were current or former smokers, respectively. The daily reporting of symptoms was highly variable across participating hospitals; although we observed a decline in adherence after an initial participation peak in some hospitals, other sites were characterized by low participation rates throughout the study period. CONCLUSIONS: HEpiTracker is an already available tool to monitor COVID-19 and other infectious diseases in hospital workers. This tool has already been tested in real conditions. HEpiTracker is available in Spanish, Portuguese, and English. It has the potential to become a customized asset to be used in future COVID-19 pandemic waves and other environments. TRIAL REGISTRATION: ClinicalTrials.gov NCT04326400; https://clinicaltrials.gov/ct2/show/NCT04326400.


Subject(s)
Coronavirus Infections/epidemiology , Epidemics , Hospitals , Mass Screening/methods , Mobile Applications , Personnel, Hospital , Pneumonia, Viral/epidemiology , Population Surveillance/methods , Adult , Betacoronavirus , Body Temperature , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Disclosure , Female , Health Status , Humans , Male , Middle Aged , Pandemics , Pilot Projects , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Spain/epidemiology , Telemedicine
4.
Foods ; 9(5)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438563

ABSTRACT

Pediatric obesity has a growing health and socio-economical impact due to cardiovascular and metabolic complications in adult life. Some recent studies suggest that live or heat-treated probiotics have beneficial effects in preventing fat deposition and obesity in preclinical and clinical sets. Here, we have explored the effects of heat-treated probiotic Bifidobacterium animalis subsp. lactis CECT 8145 (HT-BPL1), added as a supplement on an infant milk formula (HT-BPL1-IN), on Caenorhabditis elegans fat deposition and short-chain fatty acids (SCFAs) and lactate, using fermented baby fecal slurries. We have found that HT-BPL1-IN significantly reduced fat deposition in C. elegans, at the time it drastically augmented the generation of some SCFAs, particulary acetate and organic acid lactate. Data suggest that heat-treated BPL1 maintains its functional activities when added to an infant powder milk formula.

5.
Neuropharmacology ; 116: 110-121, 2017 04.
Article in English | MEDLINE | ID: mdl-28007500

ABSTRACT

Compound IG20 is a newly synthesised sulphated glycolipid that promotes neuritic outgrowth and myelinisation, at the time it causes the inhibition of glial proliferation and facilitates exocytosis in chromaffin cells. Here we have shown that IG20 at 0.3-10 µM afforded neuroprotection in rat hippocampal slices stressed with veratridine, glutamate or with oxygen plus glucose deprivation followed by reoxygenation (OGD/reox). Excess production of reactive oxygen species (ROS) elicited by glutamate or ODG/reox was prevented by IG20 that also restored the depressed tissue levels of GSH and ATP in hippocampal slices subjected to OGD/reox. Furthermore, the augmented iNOS expression produced upon OGD/reox exposure was also counteracted by IG20. Additionally, the IG20 elicited neuroprotection was prevented by the presence of inhibitors of the signalling pathways Jak2/STAT3, MEK/ERK1/2, and PI3K/Akt, consistent with the ability of the compound to increase the phosphorylation of Jak2, ERK1/2, and Akt. Thus, the activation of phase II response and the Nrf2/ARE pathway could explain the antioxidant and anti-inflammatory effects and the ensuing neuroprotective actions of IG20.


Subject(s)
Antioxidants/pharmacology , Glycolipids/pharmacology , Hippocampus/drug effects , Neuroprotective Agents/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antioxidants/chemistry , Cell Hypoxia/drug effects , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Glucose/deficiency , Glutamic Acid/toxicity , Glutathione/metabolism , Glycolipids/chemistry , Hippocampus/metabolism , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Molecular Structure , Neuroprotective Agents/chemistry , Nitric Oxide Synthase Type II/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Tissue Culture Techniques , Veratridine/toxicity
6.
J Neurochem ; 135(5): 880-96, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26365051

ABSTRACT

In search of druggable synthetic lipids that function as potential modulators of synaptic transmission and plasticity, we synthesized sulfoglycolipid IG20, which stimulates neuritic outgrowth. Here, we have explored its effects on ion channels and exocytosis in bovine chromaffin cells. IG20 augmented the rate of basal catecholamine release. Such effect did not depend on Ca(2+) mobilization from intracellular stores; rather, IG20-elicited secretion entirely dependent on Ca(2+) entry through L-subtype voltage-activated Ca(2+) channels. Those channels were recruited by cell depolarization mediated by IG20 likely through its ability to enhance the recruitment of Na(+) channels at more hyperpolarizing potentials. Confocal imaging with fluorescent derivative IG20-NBD revealed its rapid incorporation and confinement into the plasmalemma, supporting the idea that IG20 effects are exerted through a plasmalemmal-delimited mechanism. Thus, synthetic IG20 seems to mimic several physiological effects of endogenous lipids such as regulation of ion channels, Ca(2+) signaling, and exocytosis. Therefore, sulfoglycolipid IG20 may become a pharmacological tool for investigating the role of the lipid environment on neuronal excitability, ion channels, neurotransmitter release, synaptic efficacy, and neuronal plasticity. It may also inspire the synthesis of druggable sulfoglycolipids aimed at increasing synaptic plasticity and efficacy in neurodegenerative diseases and traumatic brain-spinal cord injury. The novel synthetic sulfoglycolipid IG20 mimics several physiological effects of endogenous lipids such as regulation of ion channels, Ca(2+) signaling, and exocytosis. This profile may eventually drive enhanced synaptic plasticity and efficacy.


Subject(s)
Chromaffin Cells/drug effects , Exocytosis/drug effects , Glycolipids/pharmacology , Sodium Channels/physiology , Animals , Azoles/metabolism , Azoles/pharmacology , Cadmium/pharmacology , Calcium/metabolism , Catecholamines/metabolism , Cattle , Cells, Cultured , Chromaffin Cells/physiology , Cytosol/drug effects , Cytosol/metabolism , Enzyme Inhibitors/pharmacology , Fura-2/analogs & derivatives , Fura-2/metabolism , Glycolipids/metabolism , Membrane Transport Modulators/pharmacology , Nifedipine/pharmacology , Nitrobenzenes/metabolism , Nitrobenzenes/pharmacology , Potassium/metabolism , Potassium/pharmacology , Sodium/metabolism , Tetrodotoxin/pharmacology , Thapsigargin/pharmacology
7.
Am J Physiol Cell Physiol ; 308(1): C1-19, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25377090

ABSTRACT

Altered synaptic transmission with excess glutamate release has been implicated in the loss of motoneurons occurring in amyotrophic lateral sclerosis (ALS). Hyperexcitability or hypoexcitability of motoneurons from mice carrying the ALS mutation SOD1(G93A) (mSOD1) has also been reported. Here we have investigated the excitability, the ion currents, and the kinetics of the exocytotic fusion pore in chromaffin cells from postnatal day 90 to postnatal day 130 mSOD1 mice, when motor deficits are already established. With respect to wild-type (WT), mSOD1 chromaffin cells had a decrease in the following parameters: 95% in spontaneous action potentials, 70% in nicotinic current for acetylcholine (ACh), 35% in Na(+) current, 40% in Ca(2+)-dependent K(+) current, and 53% in voltage-dependent K(+) current. Ca(2+) current was increased by 37%, but the ACh-evoked elevation of cytosolic Ca(2+) was unchanged. Single exocytotic spike events triggered by ACh had the following differences (mSOD1 vs. WT): 36% lower rise rate, 60% higher decay time, 51% higher half-width, 13% lower amplitude, and 61% higher quantal size. The expression of the α3-subtype of nicotinic receptors and proteins of the exocytotic machinery was unchanged in the brain and adrenal medulla of mSOD1, with respect to WT mice. A slower fusion pore opening, expansion, and closure are likely linked to the pronounced reduction in cell excitability and in the ion currents driving action potentials in mSOD1, compared with WT chromaffin cells.


Subject(s)
Amyotrophic Lateral Sclerosis/enzymology , Catecholamines/metabolism , Chromaffin Cells/enzymology , Exocytosis , Membrane Fusion , Superoxide Dismutase/metabolism , Synaptic Transmission , Acetylcholine/pharmacology , Action Potentials , Age Factors , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Calcium/metabolism , Calcium Signaling , Chromaffin Cells/drug effects , Chromaffin Cells/metabolism , Disease Models, Animal , Exocytosis/drug effects , Humans , Ion Transport , Kinetics , Male , Membrane Fusion/drug effects , Mice, Transgenic , Motor Activity , Motor Neurons/metabolism , Motor Neurons/pathology , Mutation , Potassium/metabolism , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism , Sodium/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , Synaptic Transmission/drug effects
8.
Tissue Eng Part C Methods ; 20(1): 28-41, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23631552

ABSTRACT

Skeletal muscle can be engineered by converting dermal precursors into muscle progenitors and differentiated myocytes. However, the efficiency of muscle development remains relatively low and it is currently unclear if this is due to poor characterization of the myogenic precursors, the protocols used for cell differentiation, or a combination of both. In this study, we characterized myogenic precursors present in murine dermospheres, and evaluated mature myotubes grown in a novel three-dimensional culture system. After 5-7 days of differentiation, we observed isolated, twitching myotubes followed by spontaneous contractions of the entire tissue-engineered muscle construct on an extracellular matrix (ECM). In vitro engineered myofibers expressed canonical muscle markers and exhibited a skeletal (not cardiac) muscle ultrastructure, with numerous striations and the presence of aligned, enlarged mitochondria, intertwined with sarcoplasmic reticula (SR). Engineered myofibers exhibited Na(+)- and Ca(2+)-dependent inward currents upon acetylcholine (ACh) stimulation and tetrodotoxin-sensitive spontaneous action potentials. Moreover, ACh, nicotine, and caffeine elicited cytosolic Ca(2+) transients; fiber contractions coupled to these Ca(2+) transients suggest that Ca(2+) entry is activating calcium-induced calcium release from the SR. Blockade by d-tubocurarine of ACh-elicited inward currents and Ca(2+) transients suggests nicotinic receptor involvement. Interestingly, after 1 month, engineered muscle constructs showed progressive degradation of the myofibers concomitant with fatty infiltration, paralleling the natural course of muscular degeneration. We conclude that mature myofibers may be differentiated on the ECM from myogenic precursor cells present in murine dermospheres, in an in vitro system that mimics some characteristics found in aging and muscular degeneration.


Subject(s)
Dermis/cytology , Lipids/chemistry , Models, Biological , Muscles/pathology , Muscles/physiopathology , Tissue Engineering/methods , Acetylcholine/pharmacology , Animals , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Female , Gene Expression Regulation/drug effects , Ion Channel Gating/drug effects , Mice , Muscle Development/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/ultrastructure , Muscles/ultrastructure , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism
9.
BMC Neurosci ; 14: 48, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23594371

ABSTRACT

BACKGROUND: The ability to recreate an optimal cellular microenvironment is critical to understand neuronal behavior and functionality in vitro. An organized neural extracellular matrix (nECM) promotes neural cell adhesion, proliferation and differentiation. Here, we expanded previous observations on the ability of nECM to support in vitro neuronal differentiation, with the following goals: (i) to recreate complex neuronal networks of embryonic rat hippocampal cells, and (ii) to achieve improved levels of dopaminergic differentiation of subventricular zone (SVZ) neural progenitor cells. METHODS: Hippocampal cells from E18 rat embryos were seeded on PLL- and nECM-coated substrates. Neurosphere cultures were prepared from the SVZ of P4-P7 rat pups, and differentiation of neurospheres assayed on PLL- and nECM-coated substrates. RESULTS: When seeded on nECM-coated substrates, both hippocampal cells and SVZ progenitor cells showed neural expression patterns that were similar to their poly-L-lysine-seeded counterparts. However, nECM-based cultures of both hippocampal neurons and SVZ progenitor cells could be maintained for longer times as compared to poly-L-lysine-based cultures. As a result, nECM-based cultures gave rise to a more branched neurite arborization of hippocampal neurons. Interestingly, the prolonged differentiation time of SVZ progenitor cells in nECM allowed us to obtain a purer population of dopaminergic neurons. CONCLUSIONS: We conclude that nECM-based coating is an efficient substrate to culture neural cells at different stages of differentiation. In addition, neural ECM-coated substrates increased neuronal survival and neuronal differentiation efficiency as compared to cationic polymers such as poly-L-lysine.


Subject(s)
Cell Differentiation/physiology , Dopaminergic Neurons/physiology , Extracellular Matrix/physiology , Hippocampus/cytology , Neural Stem Cells/physiology , Amyloid beta-Peptides/pharmacology , Animals , Animals, Newborn , Cell Survival , Cells, Cultured , Cerebral Ventricles/cytology , Chondroitin Sulfates/pharmacology , Dopaminergic Neurons/ultrastructure , Dose-Response Relationship, Drug , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Female , In Vitro Techniques , Male , Microscopy, Confocal , Microscopy, Electron, Scanning , Nerve Tissue Proteins/metabolism , Oligomycins/pharmacology , Pregnancy , Rats , Rats, Sprague-Dawley , Rotenone/pharmacology , Tyrosine 3-Monooxygenase/metabolism
10.
J Neurochem ; 125(2): 205-13, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23350646

ABSTRACT

Chondroitin sulfate (CS) proteoglycans (CSPGs) are the most abundant PGs of the brain extracellular matrix (ECM). Free CS could be released during ECM degradation and exert physiological functions; thus, we aimed to investigate the effects of CS on voltage- and current-clamped rat embryo hippocampal neurons in primary cultures. We found that CS elicited a whole-cell Na(+)-dependent inward current (ICS) that produced drastic cell depolarization, and a cytosolic calcium transient ([Ca(2+)]c). Those effects were similar to those elicited by α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and kainate, were completely blocked by NBQX and CNQX, were partially blocked by GYKI, and were unaffected by MK801 and D-APV. Furthermore, ICS and AMPA currents were similarly potentiated by cyclothiazide, a positive allosteric modulator of AMPA receptors. Because CSPGs have been attributed Ca(2) (+) -dependent roles, such as neural network development, axon pathfinding, plasticity and regeneration after CNS injury, CS action after ECM degradation could be contributing to the mediation of these effects through its interaction with AMPA and kainate receptors.


Subject(s)
Action Potentials/physiology , Chondroitin Sulfates/metabolism , Neurons/metabolism , Receptors, AMPA/metabolism , Receptors, Kainic Acid/metabolism , Animals , Cells, Cultured , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Hippocampus/metabolism , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley
11.
ACS Chem Neurosci ; 3(11): 873-83, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23173068

ABSTRACT

For the last two decades, most efforts on new drug development to treat Alzheimer's disease have been focused to inhibit the synthesis of amyloid beta (Aß), to prevent Aß deposition, or to clear up Aß plaques from the brain of Alzheimer's disease (AD) patients. Other pathogenic mechanisms such as the hyperphosphorylation of the microtubular tau protein (that forms neurofibrillary tangles) have also been addressed as, for instance, with inhibitors of the enzyme glycogen synthase-3 kinase beta (GSK3ß). However, in spite of their proven efficacy in animal models of AD, all these compounds have so far failed in clinical trials done in AD patients. It seems therefore desirable to explore new concepts and strategies in the field of drug development for AD. We analyze here our hypothesis that a trifunctional chemical entity acting on the L subtype of voltage-dependent Ca(2+) channels (VDCCs) and on the mitochondrial Na(+)/Ca(2+) exchanger (MNCX), and having additional antioxidant properties, may efficiently delay or stop the death of vulnerable neurons in the brain of AD patients. In recent years, evidence has accumulated indicating that enhanced neuronal Ca(2+) cycling (NCC) and futile mitochondrial Ca(2+) cycling (MCC) are central stage in activating calpain and calcineurin, as well as the intrinsic mitochondrial pathway for apoptosis, leading to death of vulnerable neurons. An additional contributing factor to neuronal death is the excess free radical production linked to distortion of Ca(2+) homeostasis. We propose that an hybrid compound containing a dihydropyridine moiety (to block L channels and mitigate Ca(2+) entry) and a benzothiazepine moiety (to block the MNCX and slow down the rate of Ca(2+) efflux from the mitochondrial matrix into the cytosol), as well as a polyphenol moiety (to sequester excess free radicals) could break down the pathological enhanced NCC and MCC, thus delaying the initiation of apoptosis and the death of vulnerable neurons. In so doing, such a trifunctional compound could eventually become a neuroprotective medicine capable of delaying disease progression in AD patients.


Subject(s)
Alzheimer Disease/metabolism , Calcium/metabolism , Mitochondria/metabolism , Neurons/metabolism , Sodium/metabolism , Apoptosis/drug effects , Calcineurin/metabolism , Calcium Channels/pharmacology , Calpain/metabolism , Dihydropyridines/pharmacology , Free Radicals/antagonists & inhibitors , Free Radicals/metabolism , Humans , Mitochondria/drug effects , Neurons/drug effects , Polyphenols/pharmacology
12.
Eur J Pharmacol ; 685(1-3): 99-107, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22498000

ABSTRACT

The cardiovascular protecting effect of the grape fruit trans-resveratrol has been explained among other factors, through augmentation of nitric oxide (NO) production in cardiovascular tissues. Another effect of low resveratrol concentration is the inhibition of single-vesicle quantal release of catecholamine from bovine adrenal chromaffin cells, that was recently suggested to be an additional factor contributing to its beneficial cardiovascular effects. We have investigated here the effects of a low concentration of trans-resveratrol (1 µM) on Ca(2+) and NO signaling pathways in bovine chromaffin cells, in an attempt to understand the mechanism underlying its previously reported inhibitory effects on quantal secretion. In cells loaded with fura-2 acetoxymethyl ester (fura-2), we have found that 1 µM resveratrol produces a transient elevation of the cytosolic Ca(2+) concentration ([Ca(2+)](c)). This Ca(2+) transient was drastically reduced when the Ca(2+) store was depleted by ryanodine and dantrolene; it was also inhibited by N(ω)-nitro-l-arginine methyl ester hydrochloride (L-NAME) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Furthermore, the Ca(2+) transient was mimicked by NO donor S-nitroso-N-acetyl-penicillamine (SNAP). Resveratrol also enhanced the production of nitrites and NO, and L-NAME blocked both responses; in contrast, augmentation by SNAP of nitrites and NO was unaffected by ODQ and was only partially inhibited by L-NAME. On the basis of these results, we are proposing that resveratrol is mitigating the catecholamine surge occurring during stress, through its ability to elicit mild local [Ca(2+)](c) transients and enhanced NO production, that blocks the last steps of exocytosis.


Subject(s)
Calcium/metabolism , Chromaffin Cells/drug effects , Nitric Oxide/metabolism , Stilbenes/pharmacology , Adrenal Medulla/cytology , Adrenal Medulla/drug effects , Adrenal Medulla/metabolism , Animals , Antioxidants/pharmacology , Cattle , Chromaffin Cells/metabolism , Exocytosis/drug effects , Fluorescent Dyes/chemistry , Fura-2/chemistry , NG-Nitroarginine Methyl Ester/pharmacology , Nitrites/metabolism , Resveratrol , S-Nitroso-N-Acetylpenicillamine/pharmacology , Signal Transduction/drug effects
13.
Front Cell Neurosci ; 6: 10, 2012.
Article in English | MEDLINE | ID: mdl-22435050

ABSTRACT

Topographical and biochemical characteristics of the substrate are critical for neuronal differentiation including axonal outgrowth and regeneration of neural circuits in vivo. Contact stimuli and signaling molecules allow neurons to develop and stabilize synaptic contacts. Here we present the development, characterization and functional validation of a new polymeric support able to induce neuronal differentiation in both PC12 cell line and adult primary skin-derived precursor cells (SKPs) in vitro. By combining a photolithographic technique with use of neural extracellular matrix (ECM) as a substrate, a biocompatible and efficient microenvironment for neuronal differentiation was developed.

14.
Cell Calcium ; 51(3-4): 309-20, 2012.
Article in English | MEDLINE | ID: mdl-22209033

ABSTRACT

The concept of stimulus-secretion coupling was born from experiments performed in chromaffin cells 50 years ago. Stimulation of these cells with acetylcholine enhances calcium (Ca(2+)) entry and this generates a transient elevation of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) that triggers the exocytotic release of catecholamines. The control of the [Ca(2+)](c) signal is complex and depends on various classes of plasmalemmal calcium channels, cytosolic calcium buffers, the uptake and release of Ca(2+) from cytoplasmic organelles, such as the endoplasmic reticulum, mitochondria, chromaffin vesicles and the nucleus, and Ca(2+) extrusion mechanisms, such as the plasma membrane Ca(2+)-stimulated ATPase, and the Na(+)/Ca(2+) exchanger. Computation of the rates of Ca(2+) fluxes between the different cell compartments support the proposal that the chromaffin cell has developed functional calcium tetrads formed by calcium channels, cytosolic calcium buffers, the endoplasmic reticulum, and mitochondria nearby the exocytotic plasmalemmal sites. These tetrads shape the Ca(2+) transients occurring during cell activation to regulate early and late steps of exocytosis, and the ensuing endocytotic responses. The different patterns of catecholamine secretion in response to stress may thus depend on such local [Ca(2+)](c) transients occurring at different cell compartments, and generated by redistribution and release of Ca(2+) by cytoplasmic organelles. In this manner, the calcium tetrads serve to couple the variable energy demands due to exo-endocytotic activities with energy production and protein synthesis.


Subject(s)
Adrenal Medulla/physiology , Calcium Signaling , Chromaffin Cells/physiology , Neurodegenerative Diseases/physiopathology , Organelles/metabolism , Acetylcholine/metabolism , Adrenal Medulla/pathology , Animals , Chromaffin Cells/ultrastructure , Cytosol/metabolism , Endocytosis , Epinephrine/metabolism , Exocytosis , Humans , Models, Animal , Norepinephrine/metabolism , Organelles/ultrastructure
15.
Cell Calcium ; 50(4): 359-69, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21839513

ABSTRACT

Compound ITH33/IQM9.21 (ITH/IQM) belongs to a new family of l-glutamic acid derivatives with antioxidant and neuroprotective properties on in vitro and in vivo models of stroke. Because neuronal damage after brain ischemia is tightly linked to excess Ca2+ entry and neuronal Ca2+ overload, we have investigated whether compound ITH/IQM antagonises the elevations of the cytosolic Ca2+ concentrations ([Ca2+]c) and the ensuing exocytotic responses triggered by depolarisation of bovine chromaffin cells. In fluo-4-loaded cell populations, ITH/IQM reduced the K+-evoked [Ca2+]c transients with an IC50 of 5.31 µM. At 10 µM, the compound decreased the amplitude and area of the Ca2+ transient elicited by challenging single fura-2-loaded cells with high K+, by 40% and 80%, respectively. This concentration also caused a blockade of K+-induced catecholamine release at the single-cell level (78%) and cell populations (55%). These effects are likely due to blockade of the whole-cell inward Ca2+ currents (IC50=6.52 µM). At 10 µM, ITH/IQM also inhibited the Ca2+-dependent outward K+ current, leaving untouched the voltage-dependent component of IK. The inward Na+ current was unaffected. Inhibition of depolarisation-elicited Ca2+ entry, [Ca2+]c elevation and exocytosis could contribute to the neuroprotective effects of ITH/IQM in vulnerable neurons undergoing depolarisation during brain ischemia.


Subject(s)
Brain/metabolism , Calcium Signaling/drug effects , Calcium/metabolism , Chromaffin Cells/metabolism , Glutamic Acid , Neurons/metabolism , Aniline Compounds/analysis , Animals , Brain/pathology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Calcium Channel Blockers/pharmacology , Catecholamines/metabolism , Cattle , Chromaffin Cells/cytology , Chromaffin Cells/drug effects , Exocytosis/drug effects , Fura-2/analysis , Glutamic Acid/analogs & derivatives , Glutamic Acid/pharmacology , Ion Transport/drug effects , Membrane Potentials/drug effects , Neurons/cytology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Patch-Clamp Techniques , Potassium/pharmacology , Stroke/drug therapy , Stroke/metabolism , Stroke/pathology , Xanthenes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...