Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(1)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37403855

ABSTRACT

In this work, we study how electrostatic forces slow down the diffusion of solute in flexible gels through coarse-grained simulations. The model used explicitly considers the movement of solute particles and polyelectrolyte chains. These movements are performed by following a Brownian dynamics algorithm. The effect of three electrostatic parameters characterizing the system (solute charge, polyelectrolyte chain charge, and ionic strength) is analyzed. Our results show that the behavior of both the diffusion coefficient and the anomalous diffusion exponent changes upon the reversal of the electric charge of one of the species. In addition, the diffusion coefficient in flexible gels differs significantly from that in rigid gels if the ionic strength is low enough. However, the effect of chain flexibility on the exponent of anomalous diffusion is significant even at high ionic strength (100 mM). Our simulations also prove that varying the polyelectrolyte chain charge does not have exactly the same effect as varying the solute particle charge.

2.
Polymers (Basel) ; 14(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36365754

ABSTRACT

The diffusion-controlled release of drugs housed in flexible nanogels has been simulated with the help of a coarse-grained model that explicitly considers polymer chains. In these in silico experiments, the effect of its flexibility is assessed by comparing it with data obtained for a rigid nanogel with the same volume fraction and topology. Our results show that the initial distribution of the drug can exert a great influence on the release kinetics. This work also reveals that certain surface phenomena driven by steric interactions can lead to apparently counterintuitive behaviors. Such phenomena are not usually included in many theoretical treatments used for the analysis of experimental release kinetics. Therefore, one should be very careful in drawing conclusions from these formalisms. In fact, our results suggest that the interpretation of drug release curves in terms of kinetic exponents (obtained from the Ritger-Peppas Equation) is a tricky question. However, such curves can provide a first estimate of the drug diffusion coefficient.

3.
Phys Chem Chem Phys ; 23(28): 14997-15002, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34231600

ABSTRACT

In this work, the long-time diffusion of a solute in a chemically crosslinked and flexible hydrogel is computed from a bead-spring model of a polymeric network to assess the effect of steric obstruction. The relative diffusivities obtained for a wide variety of systems can be described by an exponential decay depending on a parameter that differs from that employed for rigid gels. The mathematical expression derived here can approximately predict the diffusivity in flexible gels if steric hindrance is the mechanism ruling diffusion.

4.
J Chem Phys ; 152(2): 024107, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31941292

ABSTRACT

The primary goal of this work is to assess the effect of excluded volume interactions on the diffusion controlled release of drug molecules from a spherical, neutral, inert, and cross-linked device of nanometric size. To this end, coarse-grained simulations of the release process were performed. In this way, the inner structure and topology of the polymer network can be explicitly taken into account as well. Our in silico experiments reveal that the boundary condition of constant surface concentration is not appropriate for nanogels. In particular, the predictions based on the perfect sink condition clearly overestimate the fraction of drug released. In addition, these simulations provide values for the release exponent that depends on both the diameter of drug molecules and the number of drug molecules loaded in the matrix, which clearly contrasts with the classical prediction of a constant release exponent. Consequently, the widely used classification of drug release mechanisms based on this kinetic exponent must be extended to include new situations.


Subject(s)
Drug Liberation , Molecular Dynamics Simulation , Nanogels/chemistry , Pharmaceutical Preparations/chemistry , Delayed-Action Preparations , Diffusion , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry , Surface Properties
5.
Phys Rev E ; 97(4-1): 042608, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29758622

ABSTRACT

In this work, electrostatic forces between charged nanogels are explored through coarse-grained simulations. These simulations allow us to explicitly consider the complex topology of these nanoparticles and provide reliable force values to examine highly charged nanogels of a few tens of nanometers. The results obtained here clearly reveal that the electrostatic interactions between these nanoparticles are not governed by the net charge of the nanogel, which includes not only the charge of the polymer network but also the charge of ions inside. Thus two theoretical procedures for predicting effective charges are also proposed and investigated. Both provide predictions of the same order and capture the behavior found for the effective charge obtained from simulations.

6.
J Chem Phys ; 140(20): 204910, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24880328

ABSTRACT

In this work, the size-exclusion partitioning of neutral solutes in crosslinked polymer networks has been studied through Monte Carlo simulations. Two models that provide user-friendly expressions to predict the partition coefficient have been tested over a wide range of volume fractions: Ogston's model (especially devised for fibrous media) and the pore model. The effects of crosslinking and bond stiffness have also been analyzed. Our results suggest that the fiber model can acceptably account for size-exclusion effects in crosslinked gels. Its predictions are good for large solutes if the fiber diameter is assumed to be the effective monomer diameter. For solutes sizes comparable to the monomer dimensions, a smaller fiber diameter must be used. Regarding the pore model, the partition coefficient is poorly predicted when the pore diameter is estimated as the distance between adjacent crosslinker molecules. On the other hand, our results prove that the pore sizes obtained from the pore model by fitting partitioning data of swollen gels are overestimated.

7.
J Chem Phys ; 125(14): 144906, 2006 Oct 14.
Article in English | MEDLINE | ID: mdl-17042649

ABSTRACT

In this paper, the mechanisms of overcharging of a colloidal macroion in the presence of multivalent counterions are investigated by means of Monte Carlo simulations. This computational technique appears as a powerful tool for probing the validity of semianalytical models developed for this issue. In particular, the simulations performed are compared with the predictions of two different models based on the one component plasma (OCP) theory. Therein, the multivalent ionic atmosphere confined at the macroion surface is approximated by a two-dimensional Wigner crystal. These kinds of models are largely used in the literature since (in some cases) they present quite simple equations to describe the electric double layer (EDL) of macroions with different geometries in the presence of much smaller (but still multivalent) ions. In this sense, charge inversion phenomena of membranes, polyelectrolytes, DNA molecules, etc., are straightforwardly predicted in terms of these expressions. Unfortunately, comparisons between these predictions and experimental results are scarce, mostly due to the difficulty to reproduce the experimental conditions in the laboratory. Accordingly, the goal of the present paper is to simulate EDLs under real conditions (in which overcharging phenomena are expected to happen) and use the results obtained in this way for comparing with those obtained from OCP models.

SELECTION OF CITATIONS
SEARCH DETAIL
...