Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
2.
mSystems ; 7(6): e0095122, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36472419

ABSTRACT

Microbial soil communities form commensal relationships with plants to promote the growth of both parties. The optimization of plant-microbe interactions to advance sustainable agriculture is an important field in agricultural research. However, investigation in this field is hindered by a lack of model microbial community systems and efficient approaches for building these communities. Two key challenges in developing standardized model communities are maintaining community diversity over time and storing/resuscitating these communities after cryopreservation, especially considering the different growth rates of organisms. Here, a model synthetic community (SynCom) of 16 soil microorganisms commonly found in the rhizosphere of diverse plant species, isolated from soil surrounding a single switchgrass plant, has been developed and optimized for in vitro experiments. The model soil community grows reproducibly between replicates and experiments, with a high community α-diversity being achieved through growth in low-nutrient media and through the adjustment of the starting composition ratios for the growth of individual organisms. The community can additionally be cryopreserved with glycerol, allowing for easy replication and dissemination of this in vitro system. Furthermore, the SynCom also grows reproducibly in fabricated ecosystem devices (EcoFABs), demonstrating the application of this community to an existing in vitro plant-microbe system. EcoFABs allow reproducible research in model plant systems, offering the precise control of environmental conditions and the easy measurement of plant microbe metrics. Our results demonstrate the generation of a stable and diverse microbial SynCom for the rhizosphere that can be used with EcoFAB devices and can be shared between research groups for maximum reproducibility. IMPORTANCE Microbes associate with plants in distinct soil communities to the benefit of both the soil microbes and the plants. Interactions between plants and these microbes can improve plant growth and health and are therefore a field of study in sustainable agricultural research. In this study, a model community of 16 soil bacteria has been developed to further the reproducible study of plant-soil microbe interactions. The preservation of the microbial community has been optimized for dissemination to other research settings. Overall, this work will advance soil microbe research through the optimization of a robust, reproducible model community.


Subject(s)
Microbiota , Soil , Reproducibility of Results , Soil Microbiology , Plant Roots , Plants/microbiology
3.
Nat Microbiol ; 7(12): 2128-2150, 2022 12.
Article in English | MEDLINE | ID: mdl-36443458

ABSTRACT

Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth's environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment.


Subject(s)
Microbiota , Animals , Microbiota/genetics , Metagenome , Metagenomics , Earth, Planet , Soil
4.
J Anim Sci ; 100(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36041454

ABSTRACT

The objective of this study was to evaluate the effects of two rumen-native microbial feed supplements (MFS) on milk production, milk composition, and feed efficiency. A total of 90 multiparous cows between 40 and 60 d in milk were enrolled in a randomized block design study. Within each block (baseline milk yield), cows were randomly assigned to: control (no microbial feed supplementation), MFS1 (0.33 g/kg total mixed ration [TMR] of an MFS containing a minimum of Clostridium beijerinckii at 2 × 106 CFU/g and Pichia kudriavzevii at 2 × 107 CFU/g), or MFS2 (0.33 g/kg TMR of a MFS containing a minimum of C. beijerinckii at 2 × 106 CFU/g, P. kudriavzevii at 2 × 107 CFU/g, Ruminococcus bovis at 2 × 107 CFU/g, and Butyrivibrio fibrisolvens at 2 × 107 CFU/g). Cows were housed in a single group and fed the study diets ad libitum for 270 d. Individual milk yield was recorded using electronic milk meters, and milk fat and protein were measured using optical in-line analyzers at each of two daily milkings. Treatment and treatment by time effects were assessed through multiple linear regression analyses. Treatment effects were observed for milk and energy-corrected milk (ECM) yields, milk fat and protein yields and concentrations, dry matter intake (DMI), and feed efficiency; those effects were conditional to time for milk yield, DMI, and feed efficiency. Overall, milk, ECM, fat, and protein yields were higher for MFS2 compared with control cows (+3.0, 3.7, 0.12, and 0.12 kg/d, respectively). Compared with MFS1, milk yield was higher and protein yield tended to be higher for MFS2 cows (+2.9 and 0.09 kg/d, respectively). In contrast, MFS1 cows produced 0.17 and 0.08 units of percentage per day more fat and protein than MFS2 cows, and 0.07 units of percentage per day more protein than control cows. Dry matter intake and feed efficiency were higher for MFS2 cows compared with MFS1 cows (+1.3 kg/d and 0.06, respectively), and feed efficiency was higher for MFS2 cows compared with control cows (+0.04). Where observed, treatment by time effects suggest that the effects of MFS2 were more evident as time progressed after supplementation was initiated. No effects of microbial supplementation were observed on body weight, body condition score, somatic cell count, or clinical mastitis case incidence. In conclusion, the supplementation of MFS2 effectively improved economically important outcomes such as milk yield, solids, and feed efficiency.


This study evaluates the effects of two rumen-native microbial feed supplements (MFS) on milk yield, composition, and feed efficiency in lactating dairy cows. Ninety multiparous Holstein cows between 40 and 60 d in milk were assigned to control (no microbial feed supplementation), MFS1 (Clostridium beijerinckii and Pichia kudriavzevii), or MFS2 (C. beijerinckii, P. kudriavzevii, Ruminococcus bovis, and Butyrivibrio fibrisolvens) total mixed ration supplementation. Overall, MFS2 cows had higher milk and milk component yields than control and MFS1, while MFS1 cows had higher milk component concentrations than control and MFS2. Feed efficiency was higher for MFS2 compared with control and MFS1 cows. Microbial feed supplementation improved economically important outcomes such as milk yield, solids, and feed efficiency.


Subject(s)
Milk , Rumen , Female , Cattle , Animals , Rumen/metabolism , Milk/metabolism , Lactation , Animal Feed/analysis , Diet/veterinary , Dietary Supplements
5.
Nat Biotechnol ; 40(12): 1774-1779, 2022 12.
Article in English | MEDLINE | ID: mdl-35798960

ABSTRACT

Human untargeted metabolomics studies annotate only ~10% of molecular features. We introduce reference-data-driven analysis to match metabolomics tandem mass spectrometry (MS/MS) data against metadata-annotated source data as a pseudo-MS/MS reference library. Applying this approach to food source data, we show that it increases MS/MS spectral usage 5.1-fold over conventional structural MS/MS library matches and allows empirical assessment of dietary patterns from untargeted data.


Subject(s)
Metadata , Tandem Mass Spectrometry , Humans , Metabolomics/methods
6.
Nature ; 609(7925): 101-108, 2022 09.
Article in English | MEDLINE | ID: mdl-35798029

ABSTRACT

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing and/or sequencing capacity, which can also introduce biases1-3. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We developed and deployed improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detected emerging variants of concern up to 14 days earlier in wastewater samples, and identified multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring , Wastewater , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Wastewater/virology
7.
J Am Heart Assoc ; 11(10): e023038, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35574962

ABSTRACT

Background The enterosalivary nitrate-nitrite-nitric oxide (NO3-NO2-NO) pathway generates NO following oral microbiota-mediated production of salivary nitrite, potentially linking the oral microbiota to reduced cardiometabolic risk. Nitrite depletion by oral bacteria may also be important for determining the net nitrite available systemically. We examine if higher abundance of oral microbial genes favoring increased oral nitrite generation and decreased nitrite depletion is associated with a better cardiometabolic profile cross-sectionally. Methods and Results This study includes 764 adults (mean [SD] age 32 [9] years, 71% women) enrolled in ORIGINS (Oral Infections, Glucose Intolerance, and Insulin Resistance Study). Microbial DNA from subgingival dental plaques underwent 16S rRNA gene sequencing; PICRUSt2 was used to estimate functional gene profiles. To represent the different components and pathways of nitrogen metabolism in bacteria, predicted gene abundances were operationalized to create summary scores by (1) bacterial nitrogen metabolic pathway or (2) biochemical product (NO2, NO, or ammonia [NH3]) formed by the action of the bacterial reductases encoded. Finally, nitrite generation-to-depletion ratios of gene abundances were created from the above summary scores. A composite cardiometabolic Z score was created from cardiometabolic risk variables, with higher scores associated with worse cardiometabolic health. We performed multivariable linear regression analysis with cardiometabolic Z score as the outcome and the gene abundance summary scores and ratios as predictor variables, adjusting for sex, age, race, and ethnicity in the simple adjusted model. A 1 SD higher NO versus NH3 summary ratio was inversely associated with a -0.10 (false discovery rate q=0.003) lower composite cardiometabolic Z score in simple adjusted models. Higher NH3 summary score (suggestive of nitrite depletion) was associated with higher cardiometabolic risk, with a 0.06 (false discovery rate q=0.04) higher composite cardiometabolic Z score. Conclusions Increased net capacity for nitrite generation versus depletion by oral bacteria, assessed through a metagenome estimation approach, is associated with lower levels of cardiometabolic risk.


Subject(s)
Cardiovascular Diseases , Microbiota , Adult , Bacteria/genetics , Bacteria/metabolism , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Female , Humans , Male , Nitrates/metabolism , Nitric Oxide/metabolism , Nitrites , Nitrogen , Nitrogen Dioxide/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
8.
NPJ Biofilms Microbiomes ; 8(1): 30, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35444197

ABSTRACT

Periodontitis affects up to 50% of individuals worldwide, and 8.5% are diagnosed with diabetes. The high-comorbidity rate of these diseases may suggest, at least in part, a shared etiology and pathophysiology. Changes in oral microbial communities have been documented in the context of severe periodontitis and diabetes, both independently and together. However, much less is known about the early oral microbial markers of these diseases. We used a subset of the ORIGINS project dataset, which collected detailed periodontal and cardiometabolic information from 787 healthy individuals, to identify early microbial markers of periodontitis and its association with markers of cardiometabolic health. Using state-of-the-art compositional data analysis tools, we identified the log-ratio of Treponema to Corynebacterium bacteria to be a novel Microbial Indicator of Periodontitis (MIP), and found that this MIP correlates with poor periodontal health and cardiometabolic markers early in disease pathogenesis in both subgingival plaque and saliva.


Subject(s)
Cardiovascular Diseases , Microbiota , Periodontitis , Bacteria/genetics , Humans , Periodontitis/microbiology , Saliva/microbiology
9.
medRxiv ; 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35411350

ABSTRACT

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

10.
Infect Control Hosp Epidemiol ; 43(5): 657-660, 2022 05.
Article in English | MEDLINE | ID: mdl-33706827

ABSTRACT

Transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is possible among symptom-free individuals. Patients are avoiding medically necessary healthcare visits for fear of becoming infected in the healthcare setting. We screened 489 symptom-free healthcare workers for SARS-CoV-2 and found no positive results, strongly suggesting that the prevalence of SARS-CoV-2 was <1%.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Delivery of Health Care , Health Personnel , Humans , Mass Screening
11.
mSystems ; 6(6): e0113621, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34726486

ABSTRACT

Environmental monitoring in public spaces can be used to identify surfaces contaminated by persons with coronavirus disease 2019 (COVID-19) and inform appropriate infection mitigation responses. Research groups have reported detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces days or weeks after the virus has been deposited, making it difficult to estimate when an infected individual may have shed virus onto a SARS-CoV-2-positive surface, which in turn complicates the process of establishing effective quarantine measures. In this study, we determined that reverse transcription-quantitative PCR (RT-qPCR) detection of viral RNA from heat-inactivated particles experiences minimal decay over 7 days of monitoring on eight out of nine surfaces tested. The properties of the studied surfaces result in RT-qPCR signatures that can be segregated into two material categories, rough and smooth, where smooth surfaces have a lower limit of detection. RT-qPCR signal intensity (average quantification cycle [Cq]) can be correlated with surface viral load using only one linear regression model per material category. The same experiment was performed with untreated viral particles on one surface from each category, with essentially identical results. The stability of RT-qPCR viral signal demonstrates the need to clean monitored surfaces after sampling to establish temporal resolution. Additionally, these findings can be used to minimize the number of materials and time points tested and allow for the use of heat-inactivated viral particles when optimizing environmental monitoring methods. IMPORTANCE Environmental monitoring is an important tool for public health surveillance, particularly in settings with low rates of diagnostic testing. Time between sampling public environments, such as hospitals or schools, and notifying stakeholders of the results should be minimal, allowing decisions to be made toward containing outbreaks of coronavirus disease 2019 (COVID-19). The Safer At School Early Alert program (SASEA) (https://saseasystem.org/), a large-scale environmental monitoring effort in elementary school and child care settings, has processed >13,000 surface samples for SARS-CoV-2, detecting viral signals from 574 samples. However, consecutive detection events necessitated the present study to establish appropriate response practices around persistent viral signals on classroom surfaces. Other research groups and clinical labs developing environmental monitoring methods may need to establish their own correlation between RT-qPCR results and viral load, but this work provides evidence justifying simplified experimental designs, like reduced testing materials and the use of heat-inactivated viral particles.

12.
Cell ; 184(19): 4939-4952.e15, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34508652

ABSTRACT

The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.


Subject(s)
COVID-19/epidemiology , Epidemics , SARS-CoV-2/physiology , COVID-19/transmission , Databases as Topic , Disease Outbreaks , Humans , Louisiana/epidemiology , Phylogeny , Risk Factors , SARS-CoV-2/classification , Texas , Travel , United States/epidemiology
13.
Methods Mol Biol ; 2327: 87-92, 2021.
Article in English | MEDLINE | ID: mdl-34410641

ABSTRACT

Host DNA makes up the majority of DNA in a saliva sample. Therefore, shotgun metagenomics can be an inefficient way to evaluate the microbial populations of saliva since often <10% of the sequencing reads are microbial. In this chapter, we describe a method to deplete human DNA from fresh or frozen saliva samples, allowing for more efficient shotgun metagenomic sequencing of the salivary microbial community.


Subject(s)
Metagenomics , Microbiota , DNA/genetics , Humans , Metagenome , Microbiota/genetics , Saliva , Sequence Analysis, DNA
14.
bioRxiv ; 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34312621

ABSTRACT

Environmental monitoring in public spaces can be used to identify surfaces contaminated by persons with COVID-19 and inform appropriate infection mitigation responses. Research groups have reported detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on surfaces days or weeks after the virus has been deposited, making it difficult to estimate when an infected individual may have shed virus onto a SARS-CoV-2 positive surface, which in turn complicates the process of establishing effective quarantine measures. In this study, we determined that reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of viral RNA from heat-inactivated particles experiences minimal decay over seven days of monitoring on eight out of nine surfaces tested. The properties of the studied surfaces result in RT-qPCR signatures that can be segregated into two material categories, rough and smooth, where smooth surfaces have a lower limit of detection. RT-qPCR signal intensity (average quantification cycle (Cq)) can be correlated to surface viral load using only one linear regression model per material category. The same experiment was performed with infectious viral particles on one surface from each category, with essentially identical results. The stability of RT-qPCR viral signal demonstrates the need to clean monitored surfaces after sampling to establish temporal resolution. Additionally, these findings can be used to minimize the number of materials and time points tested and allow for the use of heat-inactivated viral particles when optimizing environmental monitoring methods.

15.
Microbiome ; 9(1): 132, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103074

ABSTRACT

BACKGROUND: SARS-CoV-2 is an RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Viruses exist in complex microbial environments, and recent studies have revealed both synergistic and antagonistic effects of specific bacterial taxa on viral prevalence and infectivity. We set out to test whether specific bacterial communities predict SARS-CoV-2 occurrence in a hospital setting. METHODS: We collected 972 samples from hospitalized patients with COVID-19, their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and used these bacterial profiles to classify SARS-CoV-2 RNA detection with a random forest model. RESULTS: Sixteen percent of surfaces from COVID-19 patient rooms had detectable SARS-CoV-2 RNA, although infectivity was not assessed. The highest prevalence was in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples more closely resembled the patient microbiome compared to floor samples, SARS-CoV-2 RNA was detected less often in bed rail samples (11%). SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity in both human and surface samples and higher biomass in floor samples. 16S microbial community profiles enabled high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool, and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genus Rothia strongly predicted SARS-CoV-2 presence across sample types, with greater prevalence in positive surface and human samples, even when compared to samples from patients in other intensive care units prior to the COVID-19 pandemic. CONCLUSIONS: These results contextualize the vast diversity of microbial niches where SARS-CoV-2 RNA is detected and identify specific bacterial taxa that associate with the viral RNA prevalence both in the host and hospital environment. Video Abstract.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals , Humans , Pandemics , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Viral/genetics
16.
mSystems ; 6(2)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33906915

ABSTRACT

As the number of human microbiome studies expand, it is increasingly important to identify cost-effective, practical preservatives that allow for room temperature sample storage. Here, we reanalyzed 16S rRNA gene amplicon sequencing data from a large sample storage study published in 2016 and performed shotgun metagenomic sequencing on remnant DNA from this experiment. Both results support the initial findings that 95% ethanol, a nontoxic, cost-effective preservative, is effective at preserving samples at room temperature for weeks. We expanded on this analysis by collecting a new set of fecal, saliva, and skin samples to determine the optimal ratio of 95% ethanol to sample. We identified optimal collection protocols for fecal samples (storing a fecal swab in 95% ethanol) and saliva samples (storing unstimulated saliva in 95% ethanol at a ratio of 1:2). Storing skin swabs in 95% ethanol reduced microbial biomass and disrupted community composition, highlighting the difficulties of low biomass sample preservation. The results from this study identify practical solutions for large-scale analyses of fecal and oral microbial communities.IMPORTANCE Expanding our knowledge of microbial communities across diverse environments includes collecting samples in places far from the laboratory. Identifying cost-effective preservatives that will enable room temperature storage of microbial communities for sequencing analysis is crucial to enabling microbiome analyses across diverse populations. Here, we validate findings that 95% ethanol efficiently preserves microbial composition at room temperature for weeks. We also identified the optimal ratio of 95% ethanol to sample for stool and saliva to preserve both microbial load and composition. These results provide rationale for an accessible, nontoxic, cost-effective solution that will enable crowdsourcing microbiome studies, such as The Microsetta Initiative, and lower the barrier for collecting diverse samples.

17.
mSystems ; 6(2)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33727399

ABSTRACT

Standard workflows for analyzing microbiomes often include the creation and curation of phylogenetic trees. Here we present EMPress, an interactive web tool for visualizing trees in the context of microbiome, metabolome, and other community data scalable to trees with well over 500,000 nodes. EMPress provides novel functionality-including ordination integration and animations-alongside many standard tree visualization features and thus simplifies exploratory analyses of many forms of 'omic data.IMPORTANCE Phylogenetic trees are integral data structures for the analysis of microbial communities. Recent work has also shown the utility of trees constructed from certain metabolomic data sets, further highlighting their importance in microbiome research. The ever-growing scale of modern microbiome surveys has led to numerous challenges in visualizing these data. In this paper we used five diverse data sets to showcase the versatility and scalability of EMPress, an interactive web visualization tool. EMPress addresses the growing need for exploratory analysis tools that can accommodate large, complex multi-omic data sets.

18.
mSystems ; 6(1)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33594005

ABSTRACT

Evaluating microbial community composition through next-generation sequencing has become increasingly accessible. However, metagenomic sequencing data sets provide researchers with only a snapshot of a dynamic ecosystem and do not provide information about the total microbial number, or load, of a sample. Additionally, DNA can be detected long after a microorganism is dead, making it unsafe to assume that all microbial sequences detected in a community came from living organisms. By combining relic DNA removal by propidium monoazide (PMA) with microbial quantification with flow cytometry, we present a novel workflow to quantify live microbial load in parallel with metagenomic sequencing. We applied this method to unstimulated saliva samples, which can easily be collected longitudinally and standardized by passive collection time. We found that the number of live microorganisms detected in saliva was inversely correlated with salivary flow rate and fluctuated by an order of magnitude throughout the day in healthy individuals. In an acute perturbation experiment, alcohol-free mouthwash resulted in a massive decrease in live bacteria, which would have been missed if we did not consider dead cell signal. While removing relic DNA from saliva samples did not greatly impact the microbial composition, it did increase our resolution among samples collected over time. These results provide novel insight into the dynamic nature of host-associated microbiomes and underline the importance of applying scale-invariant tools in the analysis of next-generation sequencing data sets.IMPORTANCE Human microbiomes are dynamic ecosystems often composed of hundreds of unique microbial taxa. To detect fluctuations over time in the human oral microbiome, we developed a novel workflow to quantify live microbial cells with flow cytometry in parallel with next-generation sequencing, and applied this method to over 150 unstimulated, timed saliva samples. Microbial load was inversely correlated with salivary flow rate and fluctuated by an order of magnitude within a single participant throughout the day. Removing relic DNA improved our ability to distinguish samples over time and revealed that the percentage of sequenced bacteria in a given saliva sample that are alive can range from nearly 0% up to 100% throughout a typical day. These findings highlight the dynamic ecosystem of the human oral microbiome and the benefit of removing relic DNA signals in longitudinal microbiome study designs.

19.
medRxiv ; 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33564781

ABSTRACT

The emergence of the early COVID-19 epidemic in the United States (U.S.) went largely undetected, due to a lack of adequate testing and mitigation efforts. The city of New Orleans, Louisiana experienced one of the earliest and fastest accelerating outbreaks, coinciding with the annual Mardi Gras festival, which went ahead without precautions. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large, crowded events may have accelerated early transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana initially had limited sequence diversity compared to other U.S. states, and that one successful introduction of SARS-CoV-2 led to almost all of the early SARS-CoV-2 transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras and that the festival dramatically accelerated transmission, eventually leading to secondary localized COVID-19 epidemics throughout the Southern U.S.. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate COVID-19 epidemics on a local and regional scale.

20.
Microbiome ; 9(1): 25, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33482920

ABSTRACT

BACKGROUND: Determining the role of fomites in the transmission of SARS-CoV-2 is essential in the hospital setting and will likely be important outside of medical facilities as governments around the world make plans to ease COVID-19 public health restrictions and attempt to safely reopen economies. Expanding COVID-19 testing to include environmental surfaces would ideally be performed with inexpensive swabs that could be transported safely without concern of being a source of new infections. However, CDC-approved clinical-grade sampling supplies and techniques using a synthetic swab are expensive, potentially expose laboratory workers to viable virus and prohibit analysis of the microbiome due to the presence of antibiotics in viral transport media (VTM). To this end, we performed a series of experiments comparing the diagnostic yield using five consumer-grade swabs (including plastic and wood shafts and various head materials including cotton, synthetic, and foam) and one clinical-grade swab for inhibition to RNA. For three of these swabs, we evaluated performance to detect SARS-CoV-2 in twenty intensive care unit (ICU) hospital rooms of patients including COVID-19+ patients. All swabs were placed in 95% ethanol and further evaluated in terms of RNase activity. SARS-CoV-2 was measured both directly from the swab and from the swab eluent. RESULTS: Compared to samples collected in VTM, 95% ethanol demonstrated significant inhibition properties against RNases. When extracting directly from the swab head as opposed to the eluent, RNA recovery was approximately 2-4× higher from all six swab types tested as compared to the clinical standard of testing the eluent from a CDC-approved synthetic (SYN) swab. The limit of detection (LoD) of SARS-CoV-2 from floor samples collected using the consumer-grade plastic (CGp) or research-grade plastic The Microsetta Initiative (TMI) swabs was similar or better than the SYN swab, further suggesting that swab type does not impact RNA recovery as measured by the abundance of SARS-CoV-2. The LoD for TMI was between 0 and 362.5 viral particles, while SYN and CGp were both between 725 and 1450 particles. Lastly microbiome analyses (16S rRNA gene sequencing) of paired samples (nasal and floor from same patient room) collected using different swab types in triplicate indicated that microbial communities were not impacted by swab type, but instead driven by the patient and sample type. CONCLUSIONS: Compared to using a clinical-grade synthetic swab, detection of SARS-CoV-2 from environmental samples collected from ICU rooms of patients with COVID was similar using consumer-grade swabs, stored in 95% ethanol. The yield was best from the swab head rather than the eluent and the low level of RNase activity and lack of antibiotics in these samples makes it possible to perform concomitant microbiome analyses. Video abstract.


Subject(s)
COVID-19 Nucleic Acid Testing/instrumentation , COVID-19 Nucleic Acid Testing/methods , Microbiota , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Biological Transport , Ethanol/chemistry , Feasibility Studies , Humans , Intensive Care Units , Limit of Detection , RNA, Ribosomal, 16S/genetics , RNA, Viral/genetics , Ribonucleases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...