Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 7761, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25585693

ABSTRACT

The phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of Li(x)CoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits.

2.
Sci Rep ; 4: 3586, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24394996

ABSTRACT

Two-dimensional electron gases (2DEGs) at transition-metal oxide (TMO) interfaces, and boundary states in topological insulators, are being intensively investigated. The former system harbors superconductivity, large magneto-resistance, and ferromagnetism. In the latter, honeycomb-lattice geometry plus bulk spin-orbit interactions lead to topologically protected spin-polarized bands. 2DEGs in TMOs with a honeycomb-like structure could yield new states of matter, but they had not been experimentally realized, yet. We successfully created a 2DEG at the (111) surface of KTaO3, a strong insulator with large spin-orbit coupling. Its confined states form a network of weakly-dispersing electronic gutters with 6-fold symmetry, a topology novel to all known oxide-based 2DEGs. If those pertain to just one Ta-(111) bilayer, model calculations predict that it can be a topological metal. Our findings demonstrate that completely new electronic states, with symmetries not realized in the bulk, can be tailored in oxide surfaces, promising for TMO-based devices.

3.
Phys Rev Lett ; 109(2): 027201, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-23030201

ABSTRACT

We have studied the magnetic hysteresis cycle of La0.67Sr0.33MnO3/SrRuO3 antiferromagnetically coupled bilayers, by magnetometry and polarized neutron reflectometry. A positive exchange bias as well as an unusual asymmetry are observed on the magnetic reversal process of the La0.67Sr0.33MnO3 layer. Through an extended Stoner-Wohlfarth model comprising the magnetic anisotropy of both layers, we give experimental evidence that this asymmetry originates from two different but well-defined antiferromagnetic coupling strengths at the interface between the two magnetic oxides. The possible origin of this dual coupling is discussed in view of our experimental results.

4.
Phys Rev Lett ; 103(13): 137202, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19905538

ABSTRACT

We demonstrate that the propagation velocity of field driven magnetic domain walls in ultrathin Au/Co/Au films with perpendicular anisotropy on vicinal substrates is anisotropic and strongly depends on the step density of the substrate. The velocity of walls oriented perpendicular to the steps drastically increases with increasing local step density while being unchanged or only weakly decreased for the walls oriented parallel to the steps. We develop an analytical model revealing the step-modified exchange interactions as the main driving force for this anisotropic behavior. The enhancement of the domain wall velocity at low magnetic fields far below the Walker instability threshold makes this phenomenon interesting for magnetic nanodevices.

5.
Phys Rev Lett ; 91(22): 226103, 2003 Nov 28.
Article in English | MEDLINE | ID: mdl-14683252

ABSTRACT

Based on helium atom beam diffraction and scanning tunneling microscopy data, the coexistence of a meandering and a bunching instability during homoepitaxial step flow growth is established in a class of nonreconstructed, metallic vicinal surfaces, Cu (1,1,n), n=5,9,17. Specifically, the meandering instability is shown to act as a precursor to the bunching instability, indicating that a one-dimensional treatment of bunching in step flow growth is not sufficient. Our findings might be generic to step flow growth in kinetically restricted systems.

6.
Phys Rev Lett ; 91(19): 196801, 2003 Nov 07.
Article in English | MEDLINE | ID: mdl-14611598

ABSTRACT

We report a quantitative low-temperature scanning tunneling spectroscopy (STS) study on the Ag(111) surface state over an unprecedented range of currents (50 pA to 6 microA) through which we can tune the electric field in the tunnel junction of the microscope. We show that in STS a sizable Stark effect causes a shift of the surface-state binding energy E0. Data taken are reproduced by a one-dimensional potential model calculation, and are found to yield a Stark-free energy E0 in agreement with recent state-of-the-art photoemission spectroscopy measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...