Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biomolecules ; 13(7)2023 06 29.
Article in English | MEDLINE | ID: mdl-37509090

ABSTRACT

This research presents a novel and environmentally friendly approach for the synthesis of multifunctional nanobiocomposites for the efficient removal of toxic heavy metal and dye, as well as the disinfection of wastewater microorganisms. The nanobiocomposites (KAC-CS-AgNPs) were prepared by incorporating photochemically generated silver nanoparticles (AgNPs) within a chitosan (CS)-modified, high-surface-area activated carbon derived from kenaf (KAC), using a unique self-activation method. The even distribution of AgNPs was visible in the scanning electron microscopy images and a Fourier transform infra red study demonstrated major absorption peaks. The experimental results revealed that KA-CS-AgNPs exhibited exceptional adsorption efficiency for copper (Cu2+), lead (Pb2+), and Congo Red dye (CR), and showed potent antibacterial activity against Staphylococcus aureus and Escherichia coli. The maximum adsorption capacity (mg g-1) of KAC-CS-AgNPs was 71.5 for Cu2+, 72.3 for Pb2+, and 75.9 for CR, and the adsorption phenomena followed on the Freundlich and Langmuir isotherm models and the second-order kinetic model (R2 > 0.99). KAC-CS-AgNPs also exhibited excellent reusability of up to four consecutive cycles with minor losses in adsorption ability. The thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic in nature. The bacterial inactivation tests demonstrated that KAC-CS-AgNPs had a strong bactericidal effect on both E. coli and S. aureus, with MIC calculated for E. coli and S. aureus as 32 µg mL-1 and 44 µg mL-1, respectively. The synthesized bioinspired nanocomposite KAC-CS-AgNPs could be an innovative solution for effective and sustainable wastewater treatment and has great potential for commercial applications.


Subject(s)
Chitosan , Metal Nanoparticles , Staphylococcus aureus , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Escherichia coli , Copper/pharmacology , Lead , Anti-Bacterial Agents/chemistry , Chitosan/chemistry
2.
Materials (Basel) ; 15(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36556707

ABSTRACT

The cadmium-contaminated water body is a worldwide concern for the environment and toxic to human beings and the removal of cadmium ions from drinking and groundwater sustainably and cost-effectively is important. A novel nano-biocomposite was obtained by impregnating silver nanoparticles (AgNPs) within kenaf-based activated carbon (KAC) in the presence of chitosan matrix (CS) by a simple, facile photoirradiation method. The nano-biocomposite (CS-KAC-Ag) was characterized by an environmental scanning electron microscope equipped with energy dispersive X-ray spectroscopy (ESEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and Brunauer−Emmett−Teller (BET) method. A Box−Behnken design of response surface methodology (RSM) was used to optimize the adsorption of Cd2+. It was found that 95.1% of Cd2+ (10 mg L−1) was eliminated at pH 9, contact time of 120 min, and adsorbent dosage of 20 mg, respectively. The adsorption of Cd2+ by CS-KAC-Ag is also in agreement with the pseudo-second-order kinetic model with an R2 (coefficient of determination) factor greater than 99%. The lab data were also corroborated by tests conducted using water samples collected from mining sites in Mexico. Along with Cd2+, the CS-KAC-Ag exhibited superior removal efficiency towards Cr6+ (91.7%) > Ni2+ (84.4%) > Co2+ (80.5%) at pH 6.5 and 0.2 g L−1 dose of the nano-adsorbent. Moreover, the adsorbent was regenerated, and the adsorption capacity remained unaltered after five successive cycles. The results showed that synthesized CS-KAC-Ag was a biocompatible and versatile porous filtering material for the decontamination of different toxic metal ions.

3.
J Pharm Anal ; 12(3): 365-379, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35811618

ABSTRACT

Cancer therapy is a fast-emerging biomedical paradigm that elevates the diagnostic and therapeutic potential of a nanovector for identification, monitoring, targeting, and post-treatment response analysis. Nanovectors of superparamagnetic iron oxide nanoparticles (SPION) are of tremendous significance in cancer therapy because of their inherited high surface area, high reactivity, biocompatibility, superior contrast, and magnetic and photo-inducibility properties. In addition to a brief introduction, we summarize various progressive aspects of nanomagnets pertaining to their production with an emphasis on sustainable biomimetic approaches. Post-synthesis particulate and surface alterations in terms of pharmaco-affinity, liquid accessibility, and biocompatibility to facilitate cancer therapy are highlighted. SPION parameters including particle contrast, core-fusions, surface area, reactivity, photosensitivity, photodynamics, and photothermal properties, which facilitate diverse cancer diagnostics, are discussed. We also elaborate on the concept of magnetism to selectively focus chemotherapeutics on tumors, cell sorting, purification of bioentities, and elimination of toxins. Finally, while addressing the toxicity of nanomaterials, the advent of ultrasmall nanomagnets as a healthier alternative with superior properties and compatible cellular interactions is reviewed. In summary, these discussions spotlight the versatility and integration of multi-tasking nanomagnets and ultrasmall nanomagnets for diverse cancer theragnostics.

4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-955450

ABSTRACT

Cancer therapy is a fast-emerging biomedical paradigm that elevates the diagnostic and therapeutic po-tential of a nanovector for identification,monitoring,targeting,and post-treatment response analysis.Nanovectors of superparamagnetic iron oxide nanoparticles(SPION)are of tremendous significance in cancer therapy because of their inherited high surface area,high reactivity,biocompatibility,superior contrast,and magnetic and photo-inducibility properties.In addition to a brief introduction,we summarize various progressive aspects of nanomagnets pertaining to their production with an emphasis on sustainable biomimetic approaches.Post-synthesis particulate and surface alterations in terms of pharmaco-affinity,liquid accessibility,and biocompatibility to facilitate cancer therapy are highlighted.SPION parameters including particle contrast,core-fusions,surface area,reactivity,photosensitivity,photodynamics,and photothermal properties,which facilitate diverse cancer diagnostics,are discussed.We also elaborate on the concept of magnetism to selectively focus chemotherapeutics on tumors,cell sorting,purification of bio-entities,and elimination of toxins.Finally,while addressing the toxicity of nanomaterials,the advent of ultrasmall nanomagnets as a healthier alternative with superior properties and compatible cellular in-teractions is reviewed.In summary,these discussions spotlight the versatility and integration of multi-tasking nanomagnets and ultrasmall nanomagnets for diverse cancer theragnostics.

5.
J Contam Hydrol ; 243: 103869, 2021 12.
Article in English | MEDLINE | ID: mdl-34418820

ABSTRACT

In this study, an effective and green adsorbent was prepared by the self- activation of kenaf fiber and then the kenaf-based activated carbon (KAC) was applied for the removal of lead Pb(II), copper Cu(II), and Congo red (CR) dye from an aqueous solution by the process of adsorption. The surface morphology of mesoporous adsorbent was characterized. The KAC showed good capacity of adsorption of as Pb(II), Cu(II), and anionic dye CR in very short period of agitation. The adsorbent efficiency of metal ions and dye was estimated by varying the adsorbent dose, pH, contact time, initial metals and dye concentration, and temperature. Optimum adsorption of metal ions and CR dye was observed at pH 6, and at pH 4 at 120 min, respectively. The adsorption isotherm was described by the Langmuir and Freundlich isotherm equations. The green adsorbent followed the pseudo-second-order kinetic model with correlation coefficients R2 value >0.99. The increase in adsorption temperature enhanced the adsorption efficiency for both heavy metals and dye. The KAC showed no significant loss of the adsorption capacity after 3 cycles of reuse.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Charcoal , Congo Red/chemistry , Hydrogen-Ion Concentration , Kinetics , Water Pollutants, Chemical/analysis
6.
Nanomaterials (Basel) ; 10(7)2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32605156

ABSTRACT

This work demonstrates the dynamic potential for tailoring the surface plasmon resonance (SPR), size, and shapes of gold nanoparticles (AuNPs) starting from an Au(I) precursor, chloro(dimethyl sulfide)gold (I) (Au(Me2S)Cl), in lieu of the conventional Au(III) precursor hydrogen tetrachloroaurate (III) hydrate (HAuCl4). Our approach presents a one-step method that permits regulation of an Au(I) precursor to form either visible-absorbing gold nanospheres or near-infrared-window (NIRW)-absorbing anisotropic AuNPs. A collection of shapes is obtained for the NIR-absorbing AuNPs herein, giving rise to spontaneously formed nanomosaic (NIR-absorbing anisotropic gold nanomosaic, NIRAuNM) without a dominant geometry for the tesserae elements that comprise the mosaic. Nonetheless, NIRAuNM exhibited high stability; one test sample remains stable with the same SPR absorption profile 7 years post-synthesis thus far. These NIRAuNM are generated within thermoresponsive poly(N-isopropylacrylamide) (PNIPAm) microgels, without the addition of any growth-assisting surfactants or reducing agents. Our directed-selection methodology is based on the photochemical reduction of a light-, heat-, and water-sensitive Au(I) precursor via a disproportionation mechanism. The NIRAuNM stabilized within the thermoresponsive microgels demonstrates a light-activated size decrease of the microgels. On irradiation with a NIR lamp source, the percent decrease in the size of the microgels loaded with NIRAuNM is at least five times greater compared to the control microgels. The concept of photothermal shrinkage of hybrid microgels is further demonstrated by the release of a model luminescent dye, as a drug release model. The absorbance and emission of the model dye released from the hybrid microgels are over an order of magnitude higher compared to the absorbance and emission of the dye released from the unloaded-control microgels.

7.
Materials (Basel) ; 13(8)2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32295022

ABSTRACT

In this communication, we present a streamlined, reproducible synthetic method for the production of size-tunable poly(methyl methacrylate) (PMMA) nanoparticles (PMMANPs) and amine-functionalized block-copolymer PMMANPs (H2N-PMMANPs) by varying subcritical concentrations (i.e., below the concentration required to form micelles at 1 atm and 20 °C) of sodium dodecyl sulfate (SDS). We plotted the Z-average size data against SDS concentration, which revealed a second-order exponential decay function, expressed as [...] .

8.
Soft Matter ; 15(39): 7787-7794, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31515547

ABSTRACT

A generalized method for sorting nanoparticles based on their cores does not exist; it is an immediate necessity, and an approach incorporating cost-effectiveness and biocompatibility is in demand. Therefore, an efficient method for the separation of various mixed core-compositions or dissimilar metallic nanoparticles to their pure forms at the nano-bio interface was developed. Various simple core-combinations of monodispersed nanoparticles with dual cores, including silver plus gold, iron oxide plus gold and platinum plus gold, to the complex three-set core-combinations of platinum plus gold plus silver and platinum plus iron plus gold were sorted using step-gradient centrifugation in a sucrose suspension. Viscosity mediated differential terminal velocities of the nanoparticles permitted diversified dragging at different gradients allowing separation. Stability, purity and properties of the nanoparticles during separation were evaluated based on visual confirmation and by employing advanced instrumentations. Moreover, theoretical studies validated our experimental observations, revealing the roles of various parameters, such as the viscosity of sucrose, the density of the particles and the velocity and duration of centrifugation, involved during the separation process. This remarkably rapid, cost-efficient and sustainable strategy can be adapted to separate other cores of nanoparticles for various biomedical research purposes, primarily to understand nanoparticle induced toxicity and particle fate and transformations in natural biotic environments.

9.
Nanomaterials (Basel) ; 9(4)2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30978992

ABSTRACT

A simple photochemical method for making conjoined bi-metallic gold-silver (Au/Ag) nanotwins, a new breed of nanoparticles (NPs), is developed. To the best of our knowledge, the photochemical method resulted in distinct, conjoined, bimetallic nanotwins that are different from any well-established alloyed or core-shell nanostructures in the literature. The conjoined Au-Ag NPs possessed surface plasmon resonance (SPR) properties of both metals. The bimetallic nanostructures possessing distinctive optical properties of both metals were obtained using Au NPs as seeds in the first step, followed by the addition of a silver precursor as feed in the second step during a photochemical irradiation process. In the first step, small, isotropic or large, anisotropic Au NPs are generated by photoinduced reduction within a biocompatible chitosan (CS) polymer. In the second step, a silver precursor (AgNO3) is added as the feed to the AuNPs seed, followed by irradiation of the solution in the ice-bath. The entire photochemical irradiation process resulting in the formation of bimetallic Au-AgNPs did not involve any other reducing agents or stabilizing agents other than the CS polymer stabilizer. The small, conjoined Au-Ag bi-metallic NPs exhibited SPR with peak maxima centering at ~400 nm and ~550 nm, whereas the large conjoined nanoparticles exhibited SPR with peak maxima centering at ~400 nm, 550 nm, and 680 nm, characteristic of both gold and silver surface plasmons in solution. The tunability in the SPR and size of the bimetallic NPs were obtained by varying the reaction time and other reaction parameters, resulting in average sizes between 30 and 100 nm. The SPR, size, distribution, and elemental composition of the bi-metallic NPs were characterized using UV-Vis absorption, electron microscopy, and energy dispersive X-ray spectroscopy (EDS) studies.

10.
ACS Appl Mater Interfaces ; 11(16): 15038-15043, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30900866

ABSTRACT

Silver nanoparticles (AgNPs) have well-known antibacterial properties that have stimulated their widespread production and usage, which nonetheless concomitantly raises concerns regarding their release into the environment. Understanding the toxicity of AgNPs to biological systems, the environment, and the role that each silver species (Ag+ ions vs AgNPs) plays in that toxicity has received significant attention. One of the critical objectives of this research is the development of a reliable method that can sense and differentiate free silver ions from AgNPs and is able to characterize silver ions leaching from nanosilver. A number of analytical methods described in the literature that are available for sensing silver ions are costly, time consuming, tedious, and, more importantly, destroy the AgNP sample. To address these issues, a phosphorescent gold(I)-pyrazolate cyclic trinuclear complex (AuT) known to detect free silver ions was employed to detect and differentiate silver ions from AgNPs within an AgNP sample. The advantage of the proposed silver sensor is its ratiometric emission capability that undermines any background interference. The sensor exhibits a strong red emission (λmax = ∼690 nm) that, in the presence of Ag+ ions, will form a bright-green emissive adduct with a blue-shifted peak maximum near 475 nm yet red-shifted excitation peak. The presence of AgNPs did not inhibit the silver detection and quantification ability of the phosphorescent silver sensor. To understand the chemical transformation of nanosilver, the leaching of silver ions from AgNPs over a period of 35 days was monitored and quantified by measuring the I/ Io changes of the sensor. Furthermore, through adduct formation, the AuT molecular system was able to remediate free silver ions from the solution. The stronger affinity of the AuT complex to "sandwich" free silver ions than AgNPs was demonstrated in the presence of KCl salt that is well documented to form AgCl in the presence of silver ions. To our knowledge, this is the only ratiometric luminescence-based silver sensor able to successfully differentiate between Ag+ ions and AgNPs, sense the silver leakage from AgNPs, and remediate toxic silver ions from an aqueous solution. The synthesis and characterization of this sensor is a simple, single-step process-anticipating its viability for various applications.

11.
Int J Mol Sci ; 19(6)2018 Jun 17.
Article in English | MEDLINE | ID: mdl-29914214

ABSTRACT

Chitosan (CS) is a natural polymer derived from chitin that has found its usage both in research and commercial applications due to its unique solubility and chemical and biological attributes. The biocompatibility and biodegradability of CS have helped researchers identify its utility in the delivery of therapeutic agents, tissue engineering, wound healing, and more. Industrial applications include cosmetic and personal care products, wastewater treatment, and corrosion protection, to name a few. Many researchers have published numerous reviews outlining the physical and chemical properties of CS, as well as its use for many of the above-mentioned applications. Recently, the cationic polyelectrolyte nature of CS was found to be advantageous for stabilizing fascinating photonic materials including plasmonic nanoparticles (e.g., gold and silver), semiconductor nanoparticles (e.g., zinc oxide, cadmium sulfide), fluorescent organic dyes (e.g., fluorescein isothiocyanate (FITC)), luminescent transitional and lanthanide complexes (e.g., Au(I) and Ru(II), and Eu(III)). These photonic systems have been extensively investigated for their usage in antimicrobial, wound healing, diagnostics, sensing, and imaging applications. Highlighted in this review are the different works involving some of the above-mentioned molecular-nano systems that are prepared or stabilized using the CS polymer. The advantages and the role of the CS for synthesizing and stabilizing the above-mentioned optically active materials have been illustrated.


Subject(s)
Biosensing Techniques/methods , Chitosan/analogs & derivatives , Light , Nanoparticles/chemistry , Optics and Photonics/methods , Chitosan/radiation effects , Nanocomposites/chemistry , Nanocomposites/radiation effects , Nanoparticles/radiation effects
12.
Anal Chem ; 90(8): 4999-5006, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29343056

ABSTRACT

We report a phosphorescent chemosensor based on a trinuclear Au(I) pyrazolate complex or [Au(3-CH3,5-COOH)Pz]3 (aka Au3Pz3) stabilized in aqueous chitosan (CS) polymer media. Au3Pz3 is synthesized in situ within aqueous CS media at pH ∼ 6.5 and room temperature (RT). Au3Pz3 exhibits strong red emission (λmax ∼ 690 nm) in such solutions. On addition of silver salt to Au3Pz3/CS aqueous media, a bright-green emissive adduct (Au3Pz3/Ag+) with a peak maximum within 475-515 nm is developed. The silver adduct exhibits a 4-fold increase in quantum yield (0.19 ± 0.02) compared to Au3Pz3 alone (0.05 ± 0.01), along with a corresponding increase in phosphorescence lifetime. With almost zero interference from 15 other metal ions tested, Au3Pz3 exhibits extreme selectivity for Ag+ with nM/ppb detection limits (6.4-72 ppb, depending on %CS and on the sensitivity basis being a signal-to-noise ratio (S/N) = 3 or a baseline-corrected signal change = 10%). Au3Pz3 exhibits sensitivity to higher concentrations (>1 mM) of other metal ions (Tl+/Pb2+/Gd3+). The sensing methodology is simple, fast, convenient, and can even be detected by the naked eye. On addition of ethylenediaminetetraacetic acid (EDTA), the red Au3Pz3 emission can be restored. Au3Pz3 and its silver adduct retain their characteristic photophysical properties in thin film forms. Remarkable photostability with <7% photobleaching after 4 h of UV irradiation is attained for Au3Pz3 solutions or thin films.

13.
Environ Sci Pollut Res Int ; 25(6): 5412-5420, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29209978

ABSTRACT

Silver nanoparticle-aided enhancement in the anti-corrosion potential and stability of plant extract as ecologically benign alternative for microbially induced corrosion treatment is demonstrated. Bioengineered silver nanoparticles (AgNPs) surface functionalized with plant extract material (proteinacious) was generated in vitro in a test tube by treating ionic AgNO3 with the leaf extract of Azadirachta indica that acted as dual reducing as well as stabilizing agent. Purity and crystallinity of the AgNPs, along with physical and surface characterizations, were evaluated by performing transmission electron microscopy, Fourier transform infrared spectroscopy, energy dispersive x-ray spectra, single-area electron diffractions, zeta potential, and dynamic light scattering measurements. Anti-corrosion studies against mild steel (MS1010) by corrosion-inducive bacterium, Bacillus thuringiensis EN2 isolated from cooling towers, were evaluated by performing electrochemical impedance spectroscopy (EIS), weight loss analysis, and surface analysis by infrared spectroscopy. Our studies revealed that AgNPs profoundly inhibited the biofilm on MS1010 surface and reduced the corrosion rates with the CR of 0.5 mm/y and an inhibition efficiency of 77% when compared to plant extract alone with a CR of 2.2 mm/y and an inhibition efficiency of 52%. Further surface analysis by infrared spectra revealed that AgNPs formed a protective layer of self-assembled film on the surface of MS1010. Additionally, EIS and surface analysis revealed that the AgNPs have inhibited the bacterial biofilm and reduced the pit on MS1010. This is the first report disclosing the application of bioengineered AgNP formulations as potent anti-corrosive inhibitor upon forming a protective layer over mild steel in cooling water towers. Graphical Abstract ᅟ.


Subject(s)
Anti-Bacterial Agents/chemistry , Bioengineering/methods , Metal Nanoparticles/chemistry , Silver Compounds/chemistry , Steel/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Azadirachta/chemistry , Bacillus thuringiensis/drug effects , Bacillus thuringiensis/physiology , Biofilms/drug effects , Biofilms/growth & development , Corrosion , Metal Nanoparticles/ultrastructure , Plant Extracts/chemistry , Plant Extracts/pharmacology
14.
J Colloid Interface Sci ; 507: 437-452, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28810197

ABSTRACT

A facile, single-step, non-seeded photochemical protocol for producing a new type of anisotropic silver nanostructure, "nanoworms", with curved longer dimensions and smooth, rounded edges. The nanoworms exhibit surface plasmon resonance (SPR) absorption in the near-infrared window (NIRW) region and are stabilized using biocompatible polymer chitosan, rendering biocompatibility and amplified safety for biological utility of the composition. Both NIRW-absorbing nanoworms and visible-absorbing nanospheres herein are attained exclusively by employing green chemistry principles. Contrary to seed-mediated or polyol techniques, the protocol demonstrates the feasibility to selectively synthesize NIRW-absorbing silver nanostructures in a single step and in complete absence of any known reducing agent. The effect of irradiation, pH, and concentration of starting materials on the formation of nanoworms vs nanospheres is investigated in detail and analyzed by optical spectroscopy and electron microscopy. The dominant SPR obtained in the NIRW region of the nanoworms results from anisotropic AgNPs, as opposed to agglomeration. From TEM images, it is also very clear that a strong correlation exists between the SPR peak maximum and the size distribution of the anisotropic nanoworm structures, with SPR peak maximum exhibiting red shift with the increase in the size of the nanoworm population. Although there is significant size variation of different nanoworms of a given population, all samples exhibit remarkable stability. The nanoworms retained their NIRW-absorbing features even at physiological pH and at a constant ionic strength. The nanodispersions also retained their SPR features in King's B medium. Antipathogenic assays reveal that the anisotropic NIRW-absorbing nanoworms exhibit the highest growth inhibition compared to other spherical nanosilver and molecular silver forms on Gram-negative pathogenic bacteria, Pseudomonas syringae pv. maculicola ES4326 and P. syringae pv. tomato DC3000. These results underscore shape effects of AgNPs and suggest that nanoworms favor the adhesion to (curved) rod-shaped Gram-negative bacteria, resulting in the highest inhibition compared to isotropic AgNPs (smaller spheres), sulfa antibiotics (silver sulfadiazine), and silver ions (AgNO3).


Subject(s)
Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Light , Particle Size , Photochemical Processes , Pseudomonas syringae/drug effects , Silver/pharmacology
15.
Langmuir ; 26(19): 15523-31, 2010 Oct 05.
Article in English | MEDLINE | ID: mdl-20836534

ABSTRACT

Stimuli-responsive phosphorescent hydrogel microspheres have been synthesized by incorporating a water-soluble phosphorescent Au(I) complex, Na(8)[Au(TPPTS)(3)], TPPTS = tris(3,3',3''-trisulfonatophenyl)phosphine, into the polymer network of poly(N-isopropylacrylamide) (PNIPAM). Remarkable sensitization of the Au-centered emission takes place in the resulting phosphorescent hydrogels (by up to 2 orders of magnitude!) compared to that of the gold complex alone in pure water. Results of pH- and temperature-dependent luminescence titrations show that the sensitization is further magnified at physiological conditions, which is desirable for biomedical applications that will include bioimaging and drug delivery. The physical properties of PNIPAM microgels are not negatively impacted by the presence of the gold luminophore, as the colloidal crystallinity and phase transition properties remain intact. Phosphorescent microspheres have been further cross-linked by covalently bonding to neighboring particles, leading to brightly phosphorescent/high-water-content crystalline hydrogel networks with more stable crystallinity vs microgel soft crystals. These gel networks exhibit the same green phosphorescence seen in the hydrogel microspheres and pure Na(8)[Au(TPPTS)(3)] aqueous solutions with a broad unstructured profile and peak maximum at ∼525 nm. Dehydration leads to further emission sensitization and gradual blue shifts that can be fine-tuned to ultimately reach a turquoise emission at ∼490 nm in the freeze-dried form of the gel, corresponding to the emission of single crystals of Na(8)[Au(TPPTS)(3)], in agreement with the photoinduced Jahn-Teller distorted excited state model we reported earlier. Remarkable sensitivity to temperature and pH takes place in the emission enhancement with particularly favorable results at physiological conditions. The work herein represents a unique example of a stimulus-responsive phosphorescent hydrogel from a transition metal-based as opposed to lanthanide-based phosphor in an aqueous medium.

16.
J Nanosci Nanotechnol ; 10(3): 1707-12, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20355561

ABSTRACT

A novel Zinc oxide (ZnO)-Hydrogel fluorescent colloidal semiconductor nanomaterials system is presented for potential bio-medical applications such as cell and tissue imaging. ZnO nanoparticles (NPs) synthesized using arc discharge technique has been conjugated to bio-compatible Poly N-isopropylacrylamide (PNIPAM) based hydrogel polymer matrix. The stability and fluorescence of ZnO nanoparticles are significantly enhanced using hydrogel colloidal dispersion. Photoluminescence spectroscopy indicates approximately 10 times enhancement in fluorescence in ZnO-Hydrogel colloidal system compared to ZnO-Water system, confirming the surface modification of ZnO nanoparticles by hydrogel polymer matrix. Femtosecond time resolved fluorescence measurement demonstrates that the fluorescence is due to the enhancement in absorption by the ZnO nanoparticles due to scattering by PNIPAM nanospheres.


Subject(s)
Metal Nanoparticles , Optics and Photonics , Zinc Oxide/chemistry , Light , Scattering, Radiation , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...