Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
2.
Chem Sci ; 10(16): 4436-4444, 2019 Apr 28.
Article in English | MEDLINE | ID: mdl-31057771

ABSTRACT

We describe here the preparation and characterization of a photocathode assembly for CO2 reduction to CO in 0.1 M LiClO4 acetonitrile. The assembly was formed on 1.0 µm thick mesoporous films of NiO using a layer-by-layer procedure based on Zr(iv)-phosphonate bridging units. The structure of the Zr(iv) bridged assembly, abbreviated as NiO|-DA-RuCP2 2+-Re(i), where DA is the dianiline-based electron donor (N,N,N',N'-((CH2)3PO3H2)4-4,4'-dianiline), RuCP2+ is the light absorber [Ru((4,4'-(PO3H2CH2)2-2,2'-bipyridine)(2,2'-bipyridine))2]2+, and Re(i) is the CO2 reduction catalyst, ReI((4,4'-PO3H2CH2)2-2,2'-bipyridine)(CO)3Cl. Visible light excitation of the assembly in CO2 saturated solution resulted in CO2 reduction to CO. A steady-state photocurrent density of 65 µA cm-2 was achieved under one sun illumination and an IPCE value of 1.9% was obtained with 450 nm illumination. The importance of the DA aniline donor in the assembly as an initial site for reduction of the RuCP2+ excited state was demonstrated by an 8 times higher photocurrent generated with DA present in the surface film compared to a control without DA. Nanosecond transient absorption measurements showed that the expected reduced one-electron intermediate, RuCP+, was formed on a sub-nanosecond time scale with back electron transfer to the electrode on the microsecond timescale which competes with forward electron transfer to the Re(i) catalyst at t 1/2 = 2.6 µs (k ET = 2.7 × 105 s-1).

3.
J Am Chem Soc ; 141(19): 7926-7933, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31021090

ABSTRACT

In artificial photosynthesis, the sun drives water splitting into H2 and O2 or converts CO2 into a useful form of carbon. In most schemes, water oxidation is typically the limiting half-reaction. Here, we introduce a molecular approach to the design of a photoanode that incorporates an electron acceptor, a sensitizer, an electron donor, and a water oxidation catalyst in a single molecular assembly. The strategy mimics the key elements in Photosystem II by initiating light-driven water oxidation with integration of a light absorber, an electron acceptor, an electron donor, and a catalyst in a controlled molecular environment on the surface of a conducting oxide electrode. Visible excitation of the assembly results in the appearance of reductive equivalents at the electrode and oxidative equivalents at a catalyst that persist for seconds in aqueous solutions. Steady-state illumination of the assembly with 440 nm light with an applied bias results in photoelectrochemical water oxidation with a per-photon absorbed efficiency of 2.3%. The results are notable in demonstrating that light-driven water oxidation can be carried out at a conductive electrode in a structure with the functional elements of Photosystem II including charge separation and water oxidation.

4.
J Chem Phys ; 150(4): 041727, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30709265

ABSTRACT

A mesoporous atomic layer deposition (ALD) double-shell electrode, Al2O3 (insulating core)//ALD ZnO|ALD TiO2, on a fluorine-doped tin oxide (FTO) conducting substrate was explored for a photoanode assembly, FTO//Al2O3 (insulating core)//ALD ZnO|ALD TiO2|-chromophore-catalyst, for light-driven water oxidation. Photocurrent densities at photoanodes based on mesoporous ALD double-shell (ALD ZnO|ALD TiO2|) and ALD single-shell (ALD ZnO|, ALD TiO2|) electrodes were investigated for O2 evaluation by a generator-collector dual working electrode configuration. The high photocurrent densities obtained based on the mesoporous ALD ZnO|ALD TiO2 photoanode for O2 evolution arise from a significant barrier to back electron transfer (BET) by the optimized tunneling barrier in the structure with the built-in electric field at the ALD ZnO|ALD TiO2 interface. The charge recombination is thus largely decreased. In the films, BET following injection has been investigated through kinetic nanosecond transient absorption spectra, and the results of energy band analysis are used to derive insight into the internal electronic structure of the electrodes.

5.
Proc Natl Acad Sci U S A ; 115(34): 8523-8528, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30082396

ABSTRACT

Stabilized photoanodes for light-driven water oxidation have been prepared on nanoparticle core/shell electrodes with surface-stabilized donor-acceptor chromophores, a water oxidation catalyst, and an electron-transfer mediator. For the electrode, fluorine-doped tin oxide FTO|SnO2/TiO2|-Org1-|1.1 nm Al2O3|-RuP2+-WOC (water oxidation catalyst) with Org1 (1-cyano-2-(4-(diphenylamino)phenyl)vinyl)phosphonic acid), the mediator RuP2+ ([Ru(4,4-(PO3H2)2-2,2-bipyridine)(2,2-bipyridine)2]2+), and the WOC, Ru(bda)(py(CH2)(3or10)P(O3H)2)2 (bda is 2,2-bipyridine-6,6-dicarboxylate with x = 3 or 10), solar excitation resulted in photocurrents of ∼500 µA/cm2 and quantitative O2 evolution at pH 4.65. Related results were obtained for other Ru(II) polypyridyl mediators. For the organic dye PP (5-(4-(dihydroxyphosphoryl)phenyl)-10,15,20-Tris(mesityl)porphyrin), solar water oxidation occurred with a driving force near 0 V.

6.
ACS Appl Mater Interfaces ; 10(26): 22821-22833, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29883103

ABSTRACT

A series of 18 ruthenium(II) polypyridyl complexes were synthesized and evaluated under electrochemically oxidative conditions, which generates the Ru(III) oxidation state and mimics the harsh conditions experienced during the kinetically limited regime that can occur in dye-sensitized solar cells (DSSCs) and dye-sensitized photo-electrosynthesis cells, to further develop fundamental insights into the factors governing molecular sensitizer surface stability in aqueous 0.1 M HClO4. Both desorption and oxidatively induced ligand substitution were observed on planar fluorine-doped tin oxide (FTO) electrodes, with a dependence on the E1/2 Ru(III/II) redox potential dictating the comparative ratios of the processes. Complexes such as RuP4OMe ( E1/2 = 0.91 vs Ag/AgCl) displayed virtually only desorption, while complexes such as RuPbpz ( E1/2 > 1.62 V vs Ag/AgCl) displayed only chemical decomposition. Comparing isomers of 4,4'- and 5,5'-disubstituted-2,2'-bipyridine ancillary ligands, a dramatic increase in the rate of desorption of the Ru(III) complexes was observed for the 5,5'-ligands. Nanoscopic indium-doped tin oxide thin films (nanoITO) were also sensitized and analyzed with cyclic voltammetry, UV-vis absorption spectroscopy, and X-ray photoelectron spectroscopy, allowing for further distinction of desorption versus ligand-substitution processes. Desorption loss to bulk solution associated with the planar surface of FTO is essentially non-existent on nanoITO, where both desorption and ligand substitution are shut down with RuP4OMe. These results revealed that minimizing time spent in the oxidized form, incorporating electron-donating groups, maximizing hydrophobicity, and minimizing molecular bulk near the adsorbed ligand are critical to optimizing the performance of ruthenium(II) polypyridyl complexes in dye-sensitized devices.

7.
J Am Chem Soc ; 140(20): 6493-6500, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29701968

ABSTRACT

Integration of photoresponsive chromophores that initiate multistep catalysis is essential in dye-sensitized photoelectrosynthesis cells and related devices. We describe here an approach that incorporates a chromophore assembly surface-bound to metal oxide electrodes for light absorption with an overlayer of catalysts for driving the half-reactions of water splitting. The assembly is a combination of a core-twisted perylene diimide and a ruthenium polypyridyl complex. By altering the connection sequence of the two subunits in the assembly, in their surface-binding to either TiO2 or NiO, the assembly can be tuned to convert visible light into strongly oxidizing equivalents for activation of an electrodeposited water oxidation catalyst (NiCo2O x) at the photoanode, or reducing equivalents for activation of an electrodeposited water reduction catalyst (NiMo0.05S x) at the photocathode. A key element in the design of the photoelectrodes comes from the synergistic roles of the vertical (interlayer) charge transfer and lateral (intralayer) charge hopping in determining overall cell efficiencies for photoelectrocatalysis.

8.
J Am Chem Soc ; 140(8): 3019-3029, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29401397

ABSTRACT

Recombination of electrons injected into TiO2 with molecular acceptors present at the interface represents an important loss mechanism in dye-sensitized water oxidation and electrical power generation. Herein, the kinetics for this interfacial electron transfer reaction to oxidized triphenylamine (TPA) acceptors was quantified over a 70° temperature range for para-methyl-TPA (Me-TPA) dissolved in acetonitrile solution, 4-[N,N-di(p-tolyl)amino]benzylphosphonic acid (a-TPA) anchored to the TiO2, and a TPA covalently bound to a ruthenium sensitizer, [Ru(tpy-C6H4-PO3H2)(tpy-TPA)]2+ "RuTPA", where tpy is 2,2':6',2''-terpyridine. Activation energies extracted from an Arrhenius analysis were found to be 11 ± 1 kJ mol-1 for Me-TPA and 22 ± 1 kJ mol-1 for a-TPA, values that were insensitive to the identity of different sensitizers. Recombination to RuTPA+ proceeded with Ea = 27 ± 1 kJ mol-1 that decreased to 19 ± 1 kJ mol-1 when recombination occurred to an oxidized para-methoxy TPA (MeO-TPA) dissolved in CH3CN. Eyring analysis revealed a smaller entropy of activation |ΔS‡| when the a-TPA was anchored to the surface or covalently linked to the sensitizer, compared to that when Me-TPA was dissolved in CH3CN. In all cases, Eyring analysis provided large and negative ΔS‡ values that point toward unfavorable entropic factors as the key contributor to the barrier that underlies the slow recombination kinetics that are generally observed at dye-sensitized TiO2 interfaces.

9.
Proc Natl Acad Sci U S A ; 115(2): 278-283, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29279386

ABSTRACT

Monodispersed mixtures of 6-nm Cu and Ag nanoparticles were prepared by electrochemical reduction on electrochemically polymerized poly-Fe(vbpy)3(PF6)2 film electrodes on glassy carbon. Conversion of the complex to poly-Fe(vbpy)2(CN)2 followed by surface binding of salts of the cations and electrochemical reduction gave a mixture of chemically distinct clusters on the surface, (Cu) m ,(Ag) n |polymer|glassy carbon electrode (GCE), as shown by X-ray photoelectron spectroscopy (XPS) measurements. A (Cu)2,(Ag)3|(80-monolayer-poly-Fe(vbpy)32+|GCE electrode at -1.33 V vs. reversible hydrogen electrode (RHE) in 0.5 M KHCO3, with 8 ppm added benzotriazole (BTA) at 0 °C, gave acetate with a faradaic efficiency of 21.2%.

10.
J Am Chem Soc ; 140(2): 719-726, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29232507

ABSTRACT

Water oxidation is a critical step in artificial photosynthesis and provides the protons and electrons used in reduction reactions to make solar fuels. Significant advances have been made in the area of molecular water oxidation catalysts with a notable breakthrough in the development of Ru(II) complexes that use a planar "bda" ligand (bda is 2,2'-bipyridine-6,6'-dicarboxylate). These Ru(II)(bda) complexes show lower overpotentials for driving water oxidation making them ideal for light-driven applications with a suitable chromophore. Nevertheless, synthesis of heterogeneous Ru(II)(bda) complexes remains challenging. We discuss here a new "bottom-up" synthetic method for immobilizing these catalysts at the surface of a photoanode for use in a dye-sensitized photoelectrosynthesis cell (DSPEC). The procedure provides a basis for rapidly screening the role of ligand variations at the catalyst in order to understand the impact on device performance. The best results of a water-oxidation DSPEC photoanode based on this procedure reached 1.4 mA/cm2 at pH 7 in 0.1 M [PO4H2]-/[PO4H]2-solution with minimal loss in catalytic behavior over 30 min, and produced an incident photon to current efficiency (IPCE) of 24.8% at 440 nm.

11.
Inorg Chem ; 57(1): 486-494, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29251495

ABSTRACT

Described herein is a photochemical approach to the generation of a high-valent metal-oxo species that utilizes a chromophore or "sensitizer", a semiconducting electron acceptor, and a redox buffer that poises a catalyst's initial protonation and oxidation state. The photoexcited sensitizer injects an electron into the semiconductor and then oxidizes the catalyst whose reactivity occurs in kinetic competition with back electron transfer. Core-shell SnO2/TiO2 semiconductor nanocrystallites inhibited charge recombination relative to TiO2 acceptors. With low sensitizer-catalyst surface coverages, a novel trapping process is exploited that enables catalysis reactivity to be quantified on time scales ranging from nanoseconds to minutes. A proof-of-principle example provides the demonstration of a light-initiated, (1e-, 2H+)-transfer reaction, with an inverse isotope effect of kH/kD = 0.63, to generate a Ru(IV) oxo species.

12.
J Am Chem Soc ; 139(45): 16248-16255, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29023122

ABSTRACT

Organic chromophores can be synthesized by established methods and offer an opportunity to expand overall solar spectrum utilization for dye-sensitized photoelectrosynthesis cells. However, there are complications in the use of organic chromophores arising from the instability of their oxidized forms, the inability of their oxidized forms to activate a water oxidation catalyst, or the absence of a sufficiently reducing excited state for electron injection into appropriate semiconductors. Three new triarylamine donor-acceptor organic dyes have been investigated here for visible-light-driven water oxidation. They offer highly oxidizing potentials (>1 V vs NHE in aqueous solution) that are sufficient to drive a water oxidation catalyst and excited-state potentials (∼-1.2 V vs NHE) sufficient to inject into TiO2. The oxidized form of one of the chromophores is sufficiently stable to exhibit reversible electrochemistry in aqueous solution. The chromophores also have favorable photophysics. Visible-light-driven oxygen production by an organic chromophore for up to 1 h of operation has been demonstrated with reasonable faradaic efficiencies for measured O2 production. The properties of organic chromophores necessary for successfully driving water oxidation in a light-driven system are explored along with strategies for improving device performance.

13.
ACS Appl Mater Interfaces ; 9(44): 39018-39026, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29035504

ABSTRACT

Visible-light-driven water splitting was investigated in a dye sensitized photoelectrosynthesis cell (DSPEC) based on a photoanode with a phosphonic acid-derivatized donor-π-acceptor (D-π-A) organic chromophore, 1, and the water oxidation catalyst [Ru(bda)(4-O(CH2)3P(O3H2)2-pyr)2], 2, (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate). The photoanode was prepared by using a layering strategy beginning with the organic dye anchored to an FTO|core/shell electrode, atomic layer deposition (ALD) of a thin layer (<1 nm) of TiO2, and catalyst binding through phosphonate linkage to the TiO2 layer. Device performance was evaluated by photocurrent measurements for core/shell photoanodes, with either SnO2 or nanoITO core materials, in acetate-buffered, aqueous solutions at pH 4.6 or 5.7. The absolute magnitudes of photocurrent changes with the core material, TiO2 spacer layer thickness, or pH, observed photocurrents were 2.5-fold higher in the presence of catalyst. The results of transient absorption measurements and DFT calculations show that electron injection by the photoexcited organic dye is ultrafast promoted by electronic interactions enabled by orientation of the dye's molecular orbitals on the electrode surface. Rapid injection is followed by recombination with the oxidized dye which is 95% complete by 1.5 ns. Although chromophore decomposition limits the efficiency of the DSPEC devices toward O2 production, the flexibility of the strategy presented here offers a new approach to photoanode design.

14.
J Am Chem Soc ; 139(41): 14518-14525, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28810743

ABSTRACT

In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore-catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R1-PO2-O-M-O-PO2-R2 type surface assembly. With the ALD procedure, assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni(II) catalyst on NiO films was also used to produce H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures.

15.
J Phys Chem Lett ; 8(18): 4374-4379, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28853290

ABSTRACT

For solar water splitting, dye-sensitized NiO photocathodes have been a primary target. Despite marginal improvement in performance, limitations remain arising from the intrinsic disadvantages of NiO and insufficient catalysis. We report here a new approach to modifying NiO photocathodes with doped NiO bilayers and an additional layer of macro-mesoporous ITO. The trilayered electrode is functionalized with a surface-attached ruthenium polypyridyl dye and a covalently bridged nickel-based hydrogen evolution catalyst. The NiO film, containing a 2% K+-doped NiO inner layer and a 2% Cu2+-doped NiO outer layer, provides sufficient driving force for hole transport following hole injection by the molecular assembly. Upon light irradiation, the resulting photocathode generates hydrogen from water sustainably with enhanced photocurrents and a Faradaic efficiency of ∼90%. This approach highlights the value of modifying both the internal and surface structure of NiO and provides insights into a new generation of dye-sensitized photocathodes for solar-driven water splitting cells.

16.
Proc Natl Acad Sci U S A ; 114(37): 9809-9813, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28847965

ABSTRACT

Dye-sensitized photoelectrosynthesis cells (DSPECs) provide a flexible approach for solar water splitting based on the integration of molecular light absorption and catalysis on oxide electrodes. Recent advances in this area, including the use of core/shell oxide interfacial structures and surface stabilization by atomic layer deposition, have led to improved charge-separation lifetimes and the ability to obtain substantially improved photocurrent densities. Here, we investigate the introduction of Ag nanoparticles into the core/shell structure and report that they greatly enhance light-driven water oxidation at a DSPEC photoanode. Under 1-sun illumination, Ag nanoparticle electrodes achieved high photocurrent densities, surpassing 2 mA cm-2 with an incident photon-to-current efficiency of 31.8% under 450-nm illumination.

17.
ACS Appl Mater Interfaces ; 9(39): 33533-33538, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28244735

ABSTRACT

Interfacial charge transfer and core-shell structures play important roles in dye-sensitized photoelectrosynthesis cells (DSPEC) for water splitting into H2 and O2. An important element in the design of the photoanode in these devices is a core/shell structure which controls local electron transfer dynamics. Here, we introduce a new element, an internal layer of Al2O3 lying between the Sb:SnO2/TiO2 layers in a core/shell electrode which can improve photocurrents by up to 300%. In these structures, the results of photocurrent, transient absorption, and linear scan voltammetry measurements point to an important role for the Al2O3 layer in controlling internal electron transfer within the core/shell structure.

18.
Nano Lett ; 17(4): 2440-2446, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28240557

ABSTRACT

Mesoporous metal oxide film electrodes consisting of derivatized 5.5 µm thick SnO2 films with an outer 4.3 nm shell of TiO2 added by atomic layer deposition (ALD) have been investigated to explore unbiased water splitting on p, n, and p+n type silicon substrates. Modified electrodes were derivatized by addition of the water oxidation catalyst, [Ru(bda)(4-O(CH2)3PO3H2)-pyr)2], 1, (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate), and chromophore, [Ru(4,4'-PO3H2-bpy) (bpy)2]2+, RuP2+, (bpy = 2,2'-bipyridine), which form 2:1 RuP2+/1 assemblies on the surface. At pH 5.7 in 0.1 M acetate buffer, these electrodes with a fluorine-doped tin oxide (FTO) back contact under ∼1 sun illumination (100 mW/cm2; white light source) perform efficient water oxidation with a photocurrent of 1.5 mA/cm2 with an 88% Faradaic efficiency (FE) for O2 production at an applied bias of 600 mV versus RHE ( ACS Energy Lett. , 2016 , 1 , 231 - 236 ). The SnO2/TiO2-chromophore-catalyst assembly was integrated with the Si electrodes by a thin layer of titanium followed by an amorphous TiO2 (Ti/a-TiO2) coating as an interconnect. In the integrated electrode, p+n-Si-Ti/a-TiO2-SnO2/TiO2|-2RuP2+/1, the p+n-Si junction provided about 350 mV in added potential to the half cell. In photolysis experiments at pH 5.7 in 0.1 M acetate buffer, bias-free photocurrents approaching 100 µA/cm2 were obtained for water splitting, 2H2O → 2H2 + O2. The FE for water oxidation was 79% with a hydrogen efficiency of ∼100% at the Pt cathode.

19.
J Am Chem Soc ; 138(51): 16745-16753, 2016 12 28.
Article in English | MEDLINE | ID: mdl-27976887

ABSTRACT

Tandem junction photoelectrochemical water-splitting devices, whereby two light absorbing electrodes targeting separate portions of the solar spectrum generate the voltage required to convert water to oxygen and hydrogen, enable much higher possible efficiencies than single absorber systems. We report here on the development of a tandem system consisting of a dye-sensitized photoelectrochemical cell (DSPEC) wired in series with a dye-sensitized solar cell (DSC). The DSPEC photoanode incorporates a tris(bipyridine)ruthenium(II)-type chromophore and molecular ruthenium based water oxidation catalyst. The DSPEC was tested with two more-red absorbing DSC variations, one utilizing N719 dye with an I3-/I- redox mediator solution and the other D35 dye with a tris(bipyridine)cobalt ([Co(bpy)3]3+/2+) based mediator. The tandem configuration consisting of the DSPEC and D35/[Co(bpy)3]3+/2+ based DSC gave the best overall performance and demonstrated the production of H2 from H2O with the only energy input from simulated solar illumination.

20.
Dalton Trans ; 45(15): 6324-8, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-26974188

ABSTRACT

The rate of electrocatalytic water oxidation by the heterogeneous water oxidation catalyst [Ru(bda)(4-O(CH2)3P(O3H2)2-pyr)2], , (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate) on metal oxide surfaces is greatly enhanced relative to water as the solvent. In these experiments with propylene carbonate (PC) as the nonaqueous solvent, water is the limiting reagent. Mechanistic studies point to atom proton transfer (APT) as the rate limiting step in water oxidation catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...