Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4605, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528140

ABSTRACT

Estrogen and progesterone, acting through their cognate receptors the estrogen receptor α (ERα) and the progesterone receptor (PR) respectively, regulate uterine biology. Using rapid immunoprecipitation and mass spectrometry (RIME) and co-immunoprecipitation, we identified TRIM28 (Tripartite motif containing 28) as a protein which complexes with ERα and PR in the regulation of uterine function. Impairment of TRIM28 expression results in the inability of the uterus to support early pregnancy through altered PR and ERα action in the uterine epithelium and stroma by suppressing PR and ERα chromatin binding. Furthermore, TRIM28 ablation in PR-expressing uterine cells results in the enrichment of a subset of TRIM28 positive and PR negative pericytes and epithelial cells with progenitor potential. In summary, our study reveals the important roles of TRIM28 in regulating endometrial cell composition and function in women, and also implies its critical functions in other hormone regulated systems.


Subject(s)
Estradiol , Estrogen Receptor alpha , Pregnancy , Female , Humans , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estradiol/metabolism , Uterus/metabolism , Progesterone/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Epithelium/metabolism , Tripartite Motif-Containing Protein 28/genetics , Tripartite Motif-Containing Protein 28/metabolism
2.
Endocr Rev ; 44(6): 1074-1095, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37409951

ABSTRACT

Endometriosis is a prevalent gynecological condition associated with pelvic pain and infertility. Despite more than a century of research, the etiology of endometriosis still eludes scientific consensus. This lack of clarity has resulted in suboptimal prevention, diagnosis, and treatment options. Evidence of genetic contributors to endometriosis is interesting but limited; however, significant progress has been made in recent years in identifying an epigenetic role in the pathogenesis of endometriosis through clinical studies, in vitro cell culture experiments, and in vivo animal models. The predominant findings include endometriosis-related differential expression of DNA methyltransferases and demethylases, histone deacetylases, methyltransferases, and demethylases, and regulators of chromatin architecture. There is also an emerging role for miRNAs in controlling epigenetic regulators in the endometrium and endometriosis. Changes in these epigenetic regulators result in differential chromatin organization and DNA methylation, with consequences for gene expression independent of a genetic sequence. Epigenetically altered expression of genes related to steroid hormone production and signaling, immune regulation, and endometrial cell identity and function have all been identified and appear to play into the pathophysiological mechanisms of endometriosis and resulting infertility. This review summarizes and critically discusses early seminal findings, the ever-growing recent evidence of epigenetic contributions to the pathophysiology of endometriosis, and implications for proposed epigenetically targeted therapeutics.


Subject(s)
Endometriosis , Infertility , Female , Animals , Humans , Endometriosis/genetics , Endometriosis/therapy , Endometriosis/metabolism , Epigenesis, Genetic , DNA Methylation , Endometrium , Methyltransferases/genetics , Methyltransferases/metabolism
3.
Int J Mol Sci ; 23(11)2022 May 28.
Article in English | MEDLINE | ID: mdl-35682747

ABSTRACT

A growing body of work suggests epigenetic dysregulation contributes to endometriosis pathophysiology and female infertility. The chromatin remodeling complex subunit AT-rich interaction domain 1A (ARID1A) must be properly expressed to maintain normal uterine function. Endometrial epithelial ARID1A is indispensable for pregnancy establishment in mice through regulation of endometrial gland function; however, ARID1A expression is decreased in infertile women with endometriosis. We hypothesized that ARID1A performs critical operations in the endometrial epithelium necessary for fertility besides maintaining gland function. To identify alterations in uterine gene expression resulting from loss of epithelial ARID1A, we performed RNA-sequencing analysis on pre-implantation uteri from LtfiCre/+Arid1af/f and control mice. Differential expression analysis identified 4181 differentially expressed genes enriched for immune-related ingenuity canonical pathways including agranulocyte adhesion and diapedesis and natural killer cell signaling. RT-qPCR confirmed an increase in pro-inflammatory cytokine and macrophage-related gene expression but a decrease in natural killer cell signaling. Immunostaining confirmed a uterus-specific increase in macrophage infiltration. Flow cytometry delineated an increase in inflammatory macrophages and a decrease in uterine dendritic cells in LtfiCre/+Arid1af/f uteri. These findings demonstrate a role for endometrial epithelial ARID1A in suppressing inflammation and maintaining uterine immune homeostasis, which are required for successful pregnancy and gynecological health.


Subject(s)
Endometriosis , Infertility, Female , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endometriosis/metabolism , Endometrium/metabolism , Female , Homeostasis , Humans , Infertility, Female/metabolism , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pregnancy , Transcription Factors/genetics , Transcription Factors/metabolism , Uterus/metabolism
4.
Reprod Sci ; 29(10): 2947-2959, 2022 10.
Article in English | MEDLINE | ID: mdl-35641854

ABSTRACT

Endometriosis is a condition of the female reproductive tract characterized by endometrium-like tissue growing outside the uterus. Though it is a common cause of pelvic pain and infertility, there is currently no reliable noninvasive method to diagnose the presence of endometriosis without surgery, and the pathophysiological mechanisms that lead to the occurrence of symptoms require further inquiry. Due to patient heterogeneity and delayed diagnosis, animal models are commonly used to study the development of endometriosis, but these are costly due to the large number of animals needed to test various treatments and experimental conditions at multiple endpoints. Here, we describe a method for synthesis of multimodal imaging gold-fluorescein isothiocyanate (FITC) nanoparticles with preclinical application via induction of nanoparticle-labeled endometriosis-like lesions in mice. Labeling donor endometrial tissue fragments with gold-FITC nanoparticles prior to induction of endometriosis in recipients enables in vivo detection of the gold-labeled lesions with photoacoustic imaging. The same imaging method can be used to visualize embryos noninvasively in pregnant mice. Furthermore, the conjugated FITC dye on the gold nanoparticles allows easy isolation of labeled lesion tissue under a fluorescence dissection microscope. After dissection, the presence of gold-FITC nanoparticles and endometrium-like histology of lesions can be verified through fluorescence imaging, gold enhancement, and immunostaining. This method for in vivo imaging of endometriosis-like lesions and fluorescence-guided dissection will permit new experimental possibilities for the longitudinal study of endometriosis development and progression as well as endometriosis-related infertility.


Subject(s)
Endometriosis , Infertility , Metal Nanoparticles , Photoacoustic Techniques , Animals , Disease Models, Animal , Endometriosis/pathology , Endometrium/pathology , Female , Fluorescein-5-isothiocyanate , Gold , Humans , Longitudinal Studies , Mice
5.
Nat Commun ; 13(1): 1101, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35232969

ABSTRACT

Female subfertility is highly associated with endometriosis. Endometrial progesterone resistance is suggested as a crucial element in the development of endometrial diseases. We report that MIG-6 is downregulated in the endometrium of infertile women with endometriosis and in a non-human primate model of endometriosis. We find ERBB2 overexpression in the endometrium of uterine-specific Mig-6 knockout mice (Pgrcre/+Mig-6f/f; Mig-6d/d). To investigate the effect of ERBB2 targeting on endometrial progesterone resistance, fertility, and endometriosis, we introduce Erbb2 ablation in Mig-6d/d mice (Mig-6d/dErbb2d/d mice). The additional knockout of Erbb2 rescues all phenotypes seen in Mig-6d/d mice. Transcriptomic analysis shows that genes differentially expressed in Mig-6d/d mice revert to their normal expression in Mig-6d/dErbb2d/d mice. Together, our results demonstrate that ERBB2 overexpression in endometrium with MIG-6 deficiency causes endometrial progesterone resistance and a nonreceptive endometrium in endometriosis-related infertility, and ERBB2 targeting reverses these effects.


Subject(s)
Endometriosis , Infertility, Female , Intracellular Signaling Peptides and Proteins , Receptor, ErbB-2 , Uterine Diseases , Animals , Endometriosis/genetics , Endometriosis/metabolism , Endometrium/abnormalities , Endometrium/metabolism , Female , Infertility, Female/genetics , Infertility, Female/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Progesterone/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Uterine Diseases/genetics , Uterine Diseases/metabolism
6.
Biol Reprod ; 106(6): 1072-1082, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35134122

ABSTRACT

Sirtuin 1 (SIRT1) is a member of the sirtuin family that functions to deacetylate both histones and non-histone proteins. Previous studies have identified significant SIRT1 upregulation in eutopic endometrium from infertile women with endometriosis. However, SIRT1 function in the uterus has not been directly studied. Using immunochemistry analysis, we found SIRT1 to be most strongly expressed at GD4.5 and GD5.5 in decidualized cells and at GD7.5 in secondary decidual cells in mouse. To assess the role of SIRT1 in uterine function, we generated uterine Sirt1 conditional knockout mice (Pgrcre/+Sirt1f/f; Sirt1d/d). A 6-month fertility trial revealed that Sirt1d/d females were subfertile. Implantation site numbers were significantly decreased in Sirt1d/d mice compared with controls at GD5.5. Sirt1d/d implantation sites at GD4.5 could be divided into two groups, Group #1 with luminal closure and nonspecific COX2 expression compared with controls (14/20) and Group #2 with an open lumen and no COX2 (6/20). In Sirt1d/d Group #1, nuclear FOXO1 expression in luminal epithelial cells was significantly decreased. In Sirt1d/d Group #2, nuclear FOXO1 expression was almost completely absent, and there was strong PGR expression in epithelial cells. At GD5.5, stromal PGR and COX2 were significantly decreased in Sirt1d/d uterine in the areas surrounding the embryo compared with controls, indicating defective decidualization. An artificially induced decidualization test revealed that Sirt1d/d females showed defects in decidualization response. All together, these data suggest that SIRT1 is important for decidualization and contributes to preparing a receptive endometrium for successful implantation.


Subject(s)
Infertility, Female , Sirtuin 1 , Animals , Cyclooxygenase 2/metabolism , Decidua/metabolism , Embryo Implantation/physiology , Endometrium/metabolism , Female , Humans , Infertility, Female/genetics , Infertility, Female/metabolism , Mice , Mice, Knockout , Pregnancy , Sirtuin 1/genetics , Sirtuin 1/metabolism , Stromal Cells/metabolism , Uterus/metabolism
7.
FASEB J ; 35(2): e21209, 2021 02.
Article in English | MEDLINE | ID: mdl-33222288

ABSTRACT

Though endometriosis and infertility are clearly associated, the pathophysiological mechanism remains unclear. Previous work has linked endometrial ARID1A loss to endometriosis-related endometrial non-receptivity. Here, we show in mice that ARID1A binds and regulates transcription of the Foxa2 gene required for endometrial gland function. Uterine-specific deletion of Arid1a compromises gland development and diminishes Foxa2 and Lif expression. Deletion of Arid1a with Ltf-iCre in the adult mouse endometrial epithelium preserves the gland development while still compromising the gland function. Mice lacking endometrial epithelial Arid1a are severely sub-fertile due to defects in implantation, decidualization, and endometrial receptivity from disruption of the LIF-STAT3-EGR1 pathway. FOXA2 is also reduced in the endometrium of women with endometriosis in correlation with diminished ARID1A, and both ARID1A and FOXA2 are reduced in nonhuman primates induced with endometriosis. Our findings describe a role for ARID1A in the endometrial epithelium supporting early pregnancy establishment through the maintenance of gland function.


Subject(s)
DNA-Binding Proteins/metabolism , Embryo Implantation , Endometrium/metabolism , Transcription Factors/metabolism , Adult , Animals , DNA-Binding Proteins/genetics , Female , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Humans , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/metabolism , Mice , Mice, Inbred C57BL , Pregnancy , Transcription Factors/genetics
8.
Semin Reprod Med ; 38(2-03): 168-178, 2020 May.
Article in English | MEDLINE | ID: mdl-33105508

ABSTRACT

Adenomyosis is a nonmalignant uterine disorder in which endometrial tissue exists within and grows into the myometrium. Animal models have generated limited insight into the still-unclear pathogenesis of adenomyosis, provided a platform for preclinical screening of many drugs and compounds with potential as therapeutics, and elucidated mechanisms underlying the pain and fertility issues that occur in many women with the disease. Spontaneous adenomyosis has been studied in nonhuman primates, primarily in the form of case reports. Adenomyosis is routinely experimentally induced in mice through methods such as neonatal tamoxifen exposure, pituitary engraftment, and human tissue xenotransplantation. Several studies have also reported hormonal or environmental toxicant exposures that give rise to murine adenomyosis, and genetically engineered models have been created that recapitulate the human-like condition, most notably involving alteration of ß-catenin expression. This review describes the animal models for adenomyosis and their contributions to our understanding of the factors underpinning the development of symptoms. Animal models represent a unique opportunity for understanding the molecular basis of adenomyosis and developing efficacious treatment options for affected women. Herein, we assess their different potentials and limitations with regard to identification of new therapeutic interventions and reflect on future directions for research and drug validation.


Subject(s)
Adenomyosis/pathology , Models, Animal , Adenomyosis/complications , Animals , Female , Humans , Infertility/etiology , Mice , Pelvic Pain/etiology , Primates
9.
Biol Reprod ; 103(4): 760-768, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32558878

ABSTRACT

The endometrium, composed of epithelial and stromal cell compartments, is tightly regulated by the ovarian steroid hormones estrogen (E2) and progesterone (P4) during early pregnancy. Through the progesterone receptor (PGR), steroid receptor coactivators, and other transcriptional coregulators, progesterone inhibits E2-induced cell proliferation and induces the differentiation of stromal cells in a process called decidualization to promote endometrial receptivity. Although interleukin-13 receptor subunit alpha-2 (Il13ra2) is expressed in the human and mouse endometrium, its potential role in the steroid hormone regulation of the endometrium has not been thoroughly examined. In this study, we employed PGR knockout mice and steroid receptor coactivator-1 knockout mice (SRC-1-/-) to profile the expression of Il13ra2 in the murine endometrium and determine the role of these transcriptional regulators in the hormone-responsiveness of Il13ra2 expression. Furthermore, we utilized a well-established decidualization-inducing steroidogenic cocktail and a siRNA-based knockdown of IL13RA2 to determine the importance of IL13RA2 in the decidualization of primary human endometrial stromal cells. Our findings demonstrate that Il13ra2 is expressed in the subepithelial stroma of the murine endometrium in response to ovarian steroid hormones and during early pregnancy in a PGR- and SRC-1-dependent manner. Furthermore, we show that knockdown of IL13RA2 before in vitro decidualization of primary human endometrial stromal cells partially compromises the full decidualization response. We conclude that Il13ra2 is a downstream target of progesterone through PGR and SRC-1 and plays a role in mediating the stromal action of ovarian steroid hormones.


Subject(s)
Gene Expression Regulation/physiology , Insulin-Like Growth Factor Binding Protein 1/metabolism , Interleukin-13 Receptor alpha2 Subunit/metabolism , Nuclear Receptor Coactivator 1/metabolism , Uterus/metabolism , Animals , Female , Insulin-Like Growth Factor Binding Protein 1/genetics , Interleukin-13 Receptor alpha2 Subunit/genetics , Mice , Mice, Knockout , Nuclear Receptor Coactivator 1/genetics , RNA Interference , RNA, Messenger , RNA, Small Interfering
10.
Int J Mol Sci ; 20(15)2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31387263

ABSTRACT

In the healthy endometrium, progesterone and estrogen signaling coordinate in a tightly regulated, dynamic interplay to drive a normal menstrual cycle and promote an embryo-receptive state to allow implantation during the window of receptivity. It is well-established that progesterone and estrogen act primarily through their cognate receptors to set off cascades of signaling pathways and enact large-scale gene expression programs. In endometriosis, when endometrial tissue grows outside the uterine cavity, progesterone and estrogen signaling are disrupted, commonly resulting in progesterone resistance and estrogen dominance. This hormone imbalance leads to heightened inflammation and may also increase the pelvic pain of the disease and decrease endometrial receptivity to embryo implantation. This review focuses on the molecular mechanisms governing progesterone and estrogen signaling supporting endometrial function and how they become dysregulated in endometriosis. Understanding how these mechanisms contribute to the pelvic pain and infertility associated with endometriosis will open new avenues of targeted medical therapies to give relief to the millions of women suffering its effects.


Subject(s)
Endometrium/metabolism , Estrogens/metabolism , Progesterone/metabolism , Signal Transduction , Animals , Endometriosis/drug therapy , Endometriosis/etiology , Endometriosis/metabolism , Female , Hormones/metabolism , Hormones/therapeutic use , Humans , Infertility, Female/etiology , Infertility, Female/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Steroids/metabolism
11.
Conserv Biol ; 23(1): 53-63, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19016822

ABSTRACT

Local land-use policy is increasingly being recognized as fundamental to biodiversity conservation in the United States. Many planners and conservation scientists have called for broader use of planning and regulatory tools to support the conservation of biodiversity at local scales. Yet little is known about the pervasiveness of these practices. We conducted an on-line survey of county, municipal, and tribal planning directors (n =116) in 3 geographic regions of the United States: metropolitan Seattle, Washington; metropolitan Des Moines, Iowa; and the Research Triangle, North Carolina. Our objectives were to gauge the extent to which local planning departments address biodiversity conservation and to identify factors that facilitate or hinder conservation actions in local planning. We found that biodiversity conservation was seldom a major consideration in these departments. Staff time was mainly devoted to development mandates and little time was spent on biodiversity conservation. Regulations requiring conservation actions that might benefit biodiversity were uncommon, with the exception of rules governing water quality in all 3 regions and the protection of threatened and endangered species in the Seattle region. Planning tools that could enhance habitat conservation were used infrequently. Collaboration across jurisdictions was widespread, but rarely focused on conservation. Departments with a conservation specialist on staff tended to be associated with higher levels of conservation actions. Jurisdictions in the Seattle region also reported higher levels of conservation action, largely driven by state and federal mandates. Increased funding was most frequently cited as a factor that would facilitate greater consideration of biodiversity in local planning. There are numerous opportunities for conservation biologists to play a role in improving conservation planning at local scales.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Local Government , Iowa , North Carolina , Planning Techniques , Surveys and Questionnaires , Washington
SELECTION OF CITATIONS
SEARCH DETAIL
...