Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 34(2)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34644692

ABSTRACT

Zircon-type NdVO4and scheelite-type PrVO4have been studied by means of Raman spectroscopy up to approximately 20 GPa. In the first compound, zircon-scheelite and scheelite-fergusonite phase transitions are reported at 6.4(3) and 19.6(4) GPa, respectively. In the case of scheelite-type PrVO4, a reversible phase transition to a PbWO4-III structure is observed at 16.8(5) GPa. In both cases, a scheelite-type structure is recovered in a metastable state at low pressures. The pressure evolution of the Raman modes is also reported. Our experimental findings are supported byab initiocalculations, which allowed us to discuss the role of mechanic and dynamical instabilities in the phase transition mechanisms.

2.
Chem Sci ; 10(26): 6467-6475, 2019 Jul 14.
Article in English | MEDLINE | ID: mdl-31341598

ABSTRACT

We report the experimental high-pressure crystal structure and equation of state of gold(i) sulfide (Au2S) determined using diamond-anvil cell synchrotron X-ray diffraction. Our data shows that Au2S has a simple cubic structure with six atoms in the unit cell (four Au in linear, and two S in tetrahedral, coordination), no internal degrees of freedom, and relatively low bulk modulus. Despite its structural simplicity, Au2S displays very unusual chemical bonding. The very similar and relatively high electronegativities of Au and S rule out any significant metallic or ionic character. Using a simple valence bond (Lewis) model, we argue that the Au2S crystal possesses two different types of covalent bonds: dative and shared. These bonds are distributed in such a way that each Au atom engages in one bond of each kind. The multiple arrangements in space of dative and shared bonds are degenerate, and the multiplicity of configurations imparts the system with multireference character, which is highly unusual for an extended solid. The other striking feature of this system is that common computational (DFT) methods fail quite spectacularly to describe it, with 20% and 400% errors in the equilibrium volume and bulk modulus, respectively. We explain this by the poor treatment of static correlation in common density-functional approximations. The fact that the solid is structurally very simple, yet presents unique chemical bonding and is unmodelable using current DFT methods, makes it an interesting case study and a computational challenge.

3.
J Phys Condens Matter ; 31(23): 235401, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-30844773

ABSTRACT

Room temperature angle dispersive powder x-ray diffraction experiments on zircon-type NdVO4 were performed for the first time under quasi-hydrostatic conditions up to 24.5 GPa. The sample undergoes two phase transitions at 6.4 and 19.9 GPa. Our results show that the first transition is a zircon-to-scheelite-type phase transition, which has not been reported before, and contradicts previous non-hydrostatic experiments. In the second transition, NdVO4 transforms into a fergusonite-type structure, which is a monoclinic distortion of scheelite-type. The compressibility and axial anisotropy of the different polymorphs of NdVO4 are reported. A direct comparison of our results with former experimental and theoretical studies on other rare-earth orthovanadates found in literature highlights the importance of the role played by non-hydrostatic stresses in their high-pressure structural behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...