Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters










Publication year range
1.
Bioact Mater ; 37: 253-268, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38585489

ABSTRACT

The chronic shortage of organs and tissues for transplantation represents a dramatic burden on healthcare systems worldwide. Tissue engineering offers a potential solution to address these shortages, but several challenges remain, with prevascularization being a critical factor for in vivo survival and integration of tissue engineering products. Concurrently, a different challenge hindering the clinical implementation of such products, regards their efficient preservation from the fabrication site to the bedside. Hypothermia has emerged as a potential solution for this issue due to its milder effects on biologic systems in comparison with other cold preservation methodologies. Its impact on prevascularization, however, has not been well studied. In this work, 3D prevascularized constructs were fabricated using adipose-derived stromal vascular fraction cells and preserved at 4 °C using Hypothermosol or basal culture media (α-MEM). Hypothermosol efficiently preserved the structural and cellular integrity of prevascular networks as compared to constructs before preservation. In contrast, the use of α-MEM led to a clear reduction in prevascular structures, with concurrent induction of high levels of apoptosis and autophagy at the cellular level. In vivo evaluation using a chorioallantoic membrane model demonstrated that, in opposition to α-MEM, Hypothermosol preservation retained the angiogenic potential of constructs before preservation by recruiting a similar number of blood vessels from the host and presenting similar integration with host tissue. These results emphasize the need of studying the impact of preservation techniques on key properties of tissue engineering constructs such as prevascularization, in order to validate and streamline their clinical application.

2.
Acta Biomater ; 178: 93-110, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38382833

ABSTRACT

While 3D tumor models have greatly evolved over the past years, there is still a strong requirement for more biosimilar models which are capable of recapitulating cellular crosstalk within the tumor microenvironment while equally displaying representative levels of tumor aggressiveness and invasion. Herein, we disclose an assembloid melanoma model based on the fusion of individual stromal multicellular spheroids (MCSs). In contrast to more traditional tumor models, we show that it is possible to develop self-organizing, heterotypic melanoma models where tumor cells present stem-cell like features like up-regulated pluripotency master regulators SOX2, POU5F1 and NANOG. Additionally, these assembloids display high levels of invasiveness while embedded in 3D matrices as evidenced by stromal cell promotion of melanoma cell invasion via metalloproteinase production. Furthermore, sensitivity to anticancer drug doxorubicin was demonstrated for the melanoma assembloid model. These findings suggest that melanoma assembloids may play a significant role in the field of 3D cancer models as they more closely mimic the tumor microenvironment when compared to more traditional MCSs, opening the doors to a better understanding of the role of tumor microenvironment in supporting tumor progression. STATEMENT OF SIGNIFICANCE: The development of complex 3D tumor models that better recapitulate the tumor microenvironment is crucial for both an improved comprehension of intercellular crosstalk and for more efficient drug screening. We have herein developed a self-organizing heterotypic assembloid-based melanoma model capable of closely mimicking the tumor microenvironment. Key features recapitulated were the preservation of cancer cell stemness, sensitivity to anti-cancer agents and tumor cell invasion promoted by stromal cells. The approach of pre-establishing distinct stromal domains for subsequent combination into more complex tumor constructs provides a route for developing superior tumor models with a higher degree of similarity to native cancer tissues.


Subject(s)
Melanoma , Humans , Spheroids, Cellular , Tumor Microenvironment , Stromal Cells , Cell Line, Tumor
6.
Biomater Sci ; 11(15): 5287-5300, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37350513

ABSTRACT

The papillary and reticular dermis harbors phenotypically distinct fibroblasts, whose functions such as maintenance of skin's microvasculature are also distinct. Thus, we hypothesized that pre-selection of the subpopulations of fibroblasts would benefit the generation of skin tissue engineered (TE) constructs, promoting their prevascularization in vitro. We first isolated papillary and reticular fibroblasts using fluorescence-activated cell sorting and studied the effect of their secretome and extracellular matrix (ECM) on human dermal microvascular endothelial cell (hDMEC) organization. Subsequently, we developed a bilayered 3D polymeric structure with distinct layer-associated features to house the subpopulations of fibroblasts, to generate a skin analogue. Both papillary and reticular fibroblasts were able to stimulate capillary-like network formation in a Matrigel assay. However, the secretome of the two subpopulations was substantially different, being enriched in VEGF, IGF-1, and Angio-1 in the case of papillary fibroblasts and in HGF and FGF-2 for the reticular subset. In addition, the fibroblast subpopulations deposited varied levels of ECM proteins, more collagen I and laminin was produced by the reticular subset, but these differences did not impact hDMEC organization. Vessel-like structures with lumens were observed earlier in the 3D skin analogue prepared with the sorted fibroblasts, although ECM deposition was not affected by the cell's pre-selection. Moreover, a more differentiated epidermal layer was obtained in the skin analogue formed by the sorted fibroblasts, confirming that its whole structure was not affected. Overall, we provide evidence that pre-selection of papillary and reticular fibroblasts is relevant for promoting the in vitro prevascularization of skin TE constructs.


Subject(s)
Dermis , Skin , Humans , Epidermis , Collagen Type I/metabolism , Fibroblasts , Cells, Cultured
7.
Biomater Adv ; 150: 213437, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37116455

ABSTRACT

The dermal papilla (DP), a specialized compartment within the hair follicle, regulates hair growth. However, human DP cells rapidly lose their inductivity in 2D-culture given the loss of positional and microenvironmental cues. Spheroids have been capable of recreating the 3D intercellular organization of DP cells, however, DP cell-matrix interactions are poorly represented. Considering the specific nature of the DP's extracellular matrix (ECM), we functionalized gellan gum (GG) with collagen IV-(HepIII) or fibronectin-(cRGDfC) derived peptide sequences to generate a 3D environment in which the phenotype and physiological functions of DP cells are restored. We further tuned the stiffness of the microenvironments by varying GG amount. Biomimetic peptides in stiffer hydrogels promoted the adhesion of DP cells, while each peptide and amount of polymer independently influenced the type and quantity of ECM proteins deposited. Furthermore, although peptides did not seem to have an influence, stiffer hydrogels improved the inductive capacity of DP cells after short term culture. Interestingly, independently of the peptide, these hydrogels supported the recapitulation of basic hair morphogenesis-like events when incorporated in an organotypic human skin in vitro model. Our work demonstrates that tailored GG hydrogels support the generation of a microenvironment in which both cell-ECM and cell-cell interactions positively influence DP cells towards the creation of an artificial DP.


Subject(s)
Dermis , Hydrogels , Humans , Cells, Cultured , Dermis/metabolism , Hydrogels/pharmacology , Recreation
8.
Mater Today Bio ; 17: 100496, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36420053

ABSTRACT

In vitro prevascularization is one of the most explored approaches to foster engineered tissue vascularization. We previously demonstrated a benefit in tissue neovascularization by using integrin-specific biomaterials prevascularized by stromal vascular fraction (SVF) cells, which triggered vasculogenesis in the absence of extrinsic growth factors. SVF cells are also associated to biological processes important in cutaneous wound healing. Thus, we aimed to investigate whether in vitro construct prevascularization with SVF accelerates the healing cascade by fostering early vascularization vis-à-vis SVF seeding prior to implantation. Prevascularized constructs delayed re-epithelization of full-thickness mice wounds compared to both non-prevascularized and control (no SVF) groups. Our results suggest this delay is due to a persistent inflammation as indicated by a significantly lower M2(CD163+)/M1(CD86+) macrophage subtype ratio. Moreover, a slower transition from the inflammatory to the proliferative phase of the healing was confirmed by reduced extracellular matrix deposition and increased presence of thick collagen fibers from early time-points, suggesting the prevalence of fiber crosslinking in relation to neodeposition. Overall, while prevascularization potentiates inflammatory cell influx, which negatively impacts the cutaneous wound healing cascade, an effective wound healing was guaranteed in non-prevascularized SVF cell-containing spongy-like hydrogels confirming that the SVF can have enhanced efficacy.

9.
Biomater Res ; 26(1): 48, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36180901

ABSTRACT

BACKGROUND: T cell priming has been shown to be a powerful immunotherapeutic approach for cancer treatment in terms of efficacy and relatively weak side effects. Systems that optimize the stimulation of T cells to improve therapeutic efficacy are therefore in constant demand. A way to achieve this is through artificial antigen presenting cells that are complexes between vehicles and key molecules that target relevant T cell subpopulations, eliciting antigen-specific T cell priming. In such T cell activator systems, the vehicles chosen to deliver and present the key molecules to the targeted cell populations are of extreme importance. In this work, a new platform for the creation of T cell activator systems based on highly tailorable nanoparticles made from the natural polymer gellan gum (GG) was developed and validated. METHODS: GG nanoparticles were produced by a water in oil emulsion procedure, and characterized by dynamic light scattering, high resolution scanning electronic microscopy and water uptake. Their biocompatibility with cultured cells was assessed by a metabolic activity assay. Surface functionalization was performed with anti-CD3/CD28 antibodies via EDC/NHS or NeutrAvidin/Biotin linkage. Functionalized particles were tested for their capacity to stimulate CD4+ T cells and trigger T cell cytotoxic responses. RESULTS: Nanoparticles were approximately 150 nm in size, with a stable structure and no detectable cytotoxicity. Water uptake originated a weight gain of up to 3200%. The functional antibodies did efficiently bind to the nanoparticles, as confirmed by SDS-PAGE, which then targeted the desired CD4+ populations, as confirmed by confocal microscopy. The developed system presented a more sustained T cell activation over time when compared to commercial alternatives. Concurrently, the expression of higher levels of key cytotoxic pathway molecules granzyme B/perforin was induced, suggesting a greater cytotoxic potential for future application in adoptive cancer therapy. CONCLUSIONS: Our results show that GG nanoparticles were successfully used as a highly tailorable T cell activator system platform capable of T cell expansion and re-education.

10.
NPJ Regen Med ; 7(1): 57, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36167724

ABSTRACT

Integrin-binding biomaterials have been extensively evaluated for their capacity to enable de novo formation of capillary-like structures/vessels, ultimately supporting neovascularization in vivo. Yet, the role of integrins as vascular initiators in engineered materials is still not well understood. Here, we show that αvß3 integrin-specific 3D matrices were able to retain PECAM1+ cells from the stromal vascular fraction (SVF) of adipose tissue, triggering vasculogenesis in vitro in the absence of extrinsic growth factors. Our results suggest that αvß3-RGD-driven signaling in the formation of capillary-like structures prevents the activation of the caspase 8 pathway and activates the FAK/paxillin pathway, both responsible for endothelial cells (ECs) survival and migration. We also show that prevascularized αvß3 integrin-specific constructs inosculate with the host vascular system fostering in vivo neovascularization. Overall, this work demonstrates the ability of the biomaterial to trigger vasculogenesis in an integrin-specific manner, by activating essential pathways for EC survival and migration within a self-regulatory growth factor microenvironment. This strategy represents an improvement to current vascularization routes for Tissue Engineering constructs, potentially enhancing their clinical applicability.

11.
Acta Biomater ; 150: 22-33, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35914694

ABSTRACT

Scarring is a major clinical issue that affects a considerable number of patients. The associated problems go beyond the loss of skin functionality, as scars bring aesthetic, psychological, and social difficulties. Therefore, new strategies are required to improve the process of healing and minimize scar formation. Research has highlighted the important role of mechanical forces in the process of skin tissue repair and scar formation, in addition to the chemical signalling. A more complete understanding of how engineered biomaterials can modulate these mechanical stimuli and modify the mechanotransduction signals in the wound microenvironment is expected to enable scar tissue reduction. The present review aims to provide an overview of our current understanding of skin biomechanics and mechanobiology underlying wound healing and scar formation, with an emphasis on the development of novel mechanomodulatory wound dressings with the capacity to offload mechanical tension in the wound environment. Furthermore, a broad overview of current challenges and future perspectives of promising mechanomodulatory biomaterials for this application are provided. STATEMENT OF SIGNIFICANCE: Scarring still is one of the biggest challenges in cutaneous wound healing. Beyond the loss of skin functionality, pathological scars, like keloids and hypertrophic, are associated to aesthetic, psychological, and social distress. Nonetheless, the understanding of the pathophysiology behind the formation of those scars remains elusive, which has in fact hindered the development of effective therapeutics. Therefore, in this review we provide an overview of our current understanding of skin biomechanics and mechanobiology underlying wound healing and scar formation, with an emphasis on the development of novel mechanomodulatory wound dressings with the capacity to offload mechanical tension in the wound environment.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Biocompatible Materials/therapeutic use , Cicatrix, Hypertrophic/pathology , Humans , Keloid/pathology , Keloid/prevention & control , Mechanotransduction, Cellular , Skin/pathology , Wound Healing/physiology
12.
Int J Pharm ; 623: 121954, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35760261

ABSTRACT

Skin infection by Mycobacterium ulcerans causes Buruli ulcer (BU) disease, a serious condition that significantly impact patient' health and quality of life and can be very difficult to treat. Treatment of BU is based on daily systemic administration of antibiotics for at least 8 weeks and presents drawbacks associated with the mode and duration of drug administration and potential side effects. Thus, new therapeutic strategies are needed to improve the efficacy and modality of BU therapeutics, resulting in a more convenient and safer antibiotic regimen. Hence, we developed a dual delivery system based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) microparticles and a gellan gum (GG) hydrogel for delivery of rifampicin (RIF) and streptomycin (STR), two antibiotics used for BU treatment. RIF was successfully loaded into PHBV microparticles, with an encapsulation efficiency of 43%, that also revealed a mean size of 10 µm, spherical form and rough topography. These microparticles were further embedded in a GG hydrogel containing STR. The resultant hydrogel showed a porous microstructure that conferred a high water retention capability (superior to 2000%) and a controlled release of both antibiotics. Also, biological studies revealed antibacterial activity against M. ulcerans, and a good cytocompatibility in a fibroblast cell line. Thus, the proposed drug delivery system can constitute a potential topical approach for treatment of skin ulcers caused by BU disease.


Subject(s)
Buruli Ulcer , Anti-Bacterial Agents/therapeutic use , Buruli Ulcer/drug therapy , Buruli Ulcer/microbiology , Humans , Hydrogels/therapeutic use , Polyesters/chemistry , Quality of Life , Rifampin , Streptomycin
13.
Adv Mater ; 34(33): e2105645, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35419887

ABSTRACT

The engineering of fully functional, biological-like tissues requires biomaterials to direct cellular events to a near-native, 3D niche extent. Natural biomaterials are generally seen as a safe option for cell support, but their biocompatibility and biodegradability can be just as limited as their bioactive/biomimetic performance. Furthermore, integrating different biomaterial cues and their final impact on cellular behavior is a complex equation where the outcome might be very different from the sum of individual parts. This review critically analyses recent progress on biomaterial-induced cellular responses, from simple adhesion to more complex stem cell differentiation, looking at the ever-growing possibilities of natural materials modification. Starting with a discussion on native material formulation and the inclusion of cell-instructive cues, the roles of shape and mechanical stimuli, the susceptibility to cellular remodeling, and the often-overlooked impact of cellular density and cell-cell interactions within constructs, are delved into. Along the way, synergistic and antagonistic combinations reported in vitro and in vivo are singled out, identifying needs and current lessons on the development of natural biomaterial libraries to solve the cell-material puzzle efficiently. This review brings together knowledge from different fields envisioning next-generation, combinatorial biomaterial development toward complex tissue engineering.


Subject(s)
Biocompatible Materials , Tissue Engineering , Biocompatible Materials/pharmacology , Cell Differentiation , Cues
14.
Biomolecules ; 12(3)2022 03 02.
Article in English | MEDLINE | ID: mdl-35327586

ABSTRACT

Extracellular matrix (ECM)-based bioinks have been steadily gaining interest in the field of bioprinting to develop biologically relevant and functional tissue constructs. Herein, we propose the use of supercritical carbon dioxide (scCO2) technology to extract the ECM components of cell-sheets that have shown promising results in creating accurate 3D microenvironments replicating the cell's own ECM, to be used in the preparation of bioinks. The ECM extraction protocol best fitted for cell sheets was defined by considering efficient DNA removal with a minor effect on the ECM. Cell sheets of human dermal fibroblasts (hDFbs) and adipose stem cells (hASCs) were processed using a customised supercritical system by varying the pressure of the reactor, presence, exposure time, and type of co-solvent. A quantification of the amount of DNA, protein, and sulfated glycosaminoglycans (sGAGs) was carried out to determine the efficiency of the extraction in relation to standard decellularization methodologies. The bioinks containing the extracted ECM were fabricated by combining them with alginate as a support polymer. The influence of the alginate (1%, 2% w/vol) and ECM (0.5% and 1.5% w/vol) amounts on the printability of the blends was addressed by analysing the rheological behaviour of the suspensions. Finally, 3D printed constructs were fabricated using an in-house built extrusion-based bioprinter, and the impact of the extrusion process on cell viability was assessed. The optimised scCO2 protocol allowed efficient removal of DNA while preserving a higher number of proteins and sGAGs than the standard methodologies. The characterization of extract's composition also revealed that the ECM produced by hDFbs (fECM) and hASCs (aECM) is distinctively affected by the extraction protocols. Furthermore, rheological analysis indicated an increase in viscosity with increasing ECM composition, an effect even more prominent in samples containing aECM. 3D printing of alginate/ECM constructs demonstrated that cell viability was only marginally affected by the extrusion process, and this effect was also dependent on the ECM source. Overall, this work highlights the benefits of supercritical fluid-based methods for ECM extraction and strengthens the relevance of ECM-derived bioinks in the development of printed tissue-like constructs.


Subject(s)
Bioprinting , Alginates , Bioprinting/methods , Extracellular Matrix/metabolism , Humans , Printing, Three-Dimensional , Stem Cells , Tissue Engineering/methods
15.
Biofabrication ; 14(2)2022 03 16.
Article in English | MEDLINE | ID: mdl-35172294

ABSTRACT

Human tissues and organs are inherently heterogeneous, and their functionality is determined by the interplay between different cell types, their secondary architecture, and gradients of signalling molecules and metabolites. To mimic the dynamics of native tissues, perfusion bioreactors and microfluidic devices are widely used in tissue engineering (TE) applications for enhancing cell culture viability in the core of 3D constructs. Still, mostin vitroscreening methods for compound efficacy and toxicity assessment include cell or tissue exposure to constant and homogeneous compound concentrations over a defined testing period. Moreover, a prevalent issue inhibiting the large-scale adoption of microfluidics and bioreactor is the tubing dependence to induce a perfusion regime. Here, we propose a compartmentalized rotational (CR) 3D cell culture platform for a stable control over gradient tissue culture conditions. Using the CR bioreactor, adjacent lanes of constructs are patterned by controlled flow dynamics to enable tissue stratification. Numerical and experimental simulations demonstrate cell seeding dynamics, as well as culture media rotational perfusion and gradient formations. Additionally, the developed system induces vertical and horizontal rotations, which increase medium exchange and homogeneous construct maturation, allowing both perfused tubing-based and tubing-free approaches. As a proof-of-concept, experiments and accompanying simulation of cellular inoculation and growth in 3D scaffold and hydrogel were performed, before the examination of a blood-brain-barrier model, demonstrating the impact of a heterotypic culture on molecular permeability under mimetic dynamic conditions. Briefly, the present work discloses the simulation of 3D dynamic cultures, and a semi-automated platform for heterotypic tissuesin vitromodelling, for broad TE and drug discovery/screening applications.


Subject(s)
Cell Culture Techniques, Three Dimensional , Tissue Engineering , Bioreactors , Computer Simulation , Humans , Perfusion , Tissue Engineering/methods
16.
Bioeng Transl Med ; 7(1): e10235, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35079623

ABSTRACT

The hair follicle (HF) is an exquisite skin appendage endowed with cyclical regenerative capacity; however, de novo follicle formation does not naturally occur. Consequently, patients suffering from extensive skin damage or hair loss are deprived of the HF critical physiological and/or aesthetic functions, severally compromising skin function and the individual's psychosocial well-being. Translation of regenerative strategies has been prevented by the loss of trichogenic capacity that relevant cell populations undergo in culture and by the lack of suitable human-based in vitro testing platforms. Here, we provide a comprehensive overview of the major difficulties associated with HF regeneration and the approaches used to overcome these drawbacks. We describe key cellular requirements and discuss the importance of the HF extracellular matrix and associated signaling for HF regeneration. Finally, we summarize the strategies proposed so far to bioengineer human HF or hair-bearing skin models and disclose future trends for the field.

17.
Curr Opin Biotechnol ; 73: 253-262, 2022 02.
Article in English | MEDLINE | ID: mdl-34555561

ABSTRACT

Cutaneous healing is a highly complex process that, if altered due to, for example, impaired vascularization, results in chronic wounds or repaired neotissue of poor quality. Significant progress has been achieved in promoting neotissue vascularization during tissue repair/regeneration. In this review, we discuss the strategies that have been explored and how each one of them contributes to regulate vascularization in the context of cutaneous wound healing from two different perspectives - biomaterial-based and a cell-based approaches. Finally, we discuss the implications of these findings on the development of the 'next generation' approaches to target vascularization in wound healing highlighting the importance of going beyond its contribution to regulate vascularization and take into consideration the temporal features of the healing process and of different types of wounds.


Subject(s)
Biocompatible Materials , Wound Healing
18.
Tissue Eng Part B Rev ; 28(3): 665-676, 2022 06.
Article in English | MEDLINE | ID: mdl-34238035

ABSTRACT

Wound re-epithelialization is a dynamic process that comprises the formation of new epithelium through an active signaling network between several growth factors (GFs) and various cell types. The main players are keratinocytes (KCs) that migrate from the wound edges over the wound bed to restore the epidermal barrier. One of the most important molecules involved in the re-epithelialization process is keratinocyte growth factor (KGF), a central player on promoting both migration and proliferation of KCs. Stromal cells, such as dermal fibroblasts, are the main producers of this factor, acting on KCs through paracrine signaling. Multiple therapeutic strategies to deliver KGF have been proposed to boost wound healing by targeting re-epithelialization. Different approaches have been explored to attain that purpose, such as topical application of this factor, controlled release of KGF from different biomaterials (hydrogels, nanoparticles, and membranes), and also gene delivery techniques. Among these strategies, KGF release via biomaterials- and genetic-based strategies shows great effectiveness in maintaining sustained KGF levels at the wound site, which is reflected in an efficient wound closure. Under this scope, this review aims not only to elucidate the potential of KGF in wound re-epithelialization but also to describe the underlying mechanism of action and further explore the therapeutic approaches using this GF. Impact statement Upon skin injury, wound re-epithelialization is one of the major milestones of the healing process. This is especially difficult to achieve on hard-to-heal wounds that are often open for long periods, as the dysregulation of the growth factors involved in this response contributes to an impaired proliferation and migration of keratinocytes. Keratinocyte growth factor (KGF) plays a central role in this problematic, as it is a potent factor that in the normal healing scenario promotes direct proliferation and migration of epidermal cells, consequently impacting re-epithelialization. Under this context, in the first part of this review, the process of wound healing and the mechanism of action of KGF are described. In the second part, various KGF delivery approaches aiming at skin re-epithelialization are reported and actively discussed. In this sense, it is herein highlighted the role of KGF in wound re-epithelialization and provided a critical overview of potential therapeutic strategies exploited so far.


Subject(s)
Fibroblast Growth Factor 7 , Re-Epithelialization , Biocompatible Materials , Cell Movement , Fibroblast Growth Factor 7/metabolism , Fibroblast Growth Factor 7/pharmacology , Humans , Keratinocytes/metabolism , Wound Healing
19.
Adv Mater ; 33(52): e2105361, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34617338

ABSTRACT

Solid-state optics has been the pillar of modern digital age. Integrating soft hydrogel materials with micro/nanooptics could expand the horizons of photonics for bioengineering. Here, wet-spun multilayer hydrogel fibers are engineered through ionic-crosslinked natural polysaccharides that serve as multifunctional platforms. The resulting flexible hydrogel structure and reversible crosslinking provide tunable design properties such as adjustable refractive index and fusion splicing. Modulation of the optical readout via physical stimuli, including shape, compression, and multiple optical inputs/outputs is demonstrated. The unique permeability of the hydrogels is also combined with plasmonic nanoparticles for molecular detection of SARS-CoV-2 in fiber-coupled biomedical swabs. A tricoaxial 3D printing nozzle is then employed for the continuous fabrication of living optical fibers. Light interaction with living cells enables the quantification and digitalization of complex biological phenomena such as 3D cancer progression and drug susceptibility. These fibers pave the way for advances in biomaterial-based photonics and biosensing platforms.


Subject(s)
Hydrogels/chemistry , Optical Fibers , Optics and Photonics/methods , Polysaccharides/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biocompatible Materials/chemistry , Biosensing Techniques , COVID-19/diagnosis , COVID-19/virology , Cell Culture Techniques, Three Dimensional , Cell Line, Tumor , Cell Proliferation/drug effects , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Printing, Three-Dimensional , SARS-CoV-2/isolation & purification
20.
Biomaterials ; 277: 121112, 2021 10.
Article in English | MEDLINE | ID: mdl-34488122

ABSTRACT

Natural extracellular matrix governs cells providing biomechanical and biofunctional outstanding properties, despite being porous and mostly made of soft materials. Among organs, specific tissues present specialized macro-architectures. For instance, hepatic lobules present radial organization, while vascular sinusoids are branched from vertical veins, providing specific biofunctional features. Therefore, it is imperative to mimic such structures while modeling tissues. So far, there is limited capability of coupling oriented macro-structures with interconnected micro-channels in programmable long-range vertical and radial sequential orientations. Herein, a three-directional ice crystal elongation (3DICE) system is presented to code geometries in cryogels. Using 3DICE, guided ice crystals growth templates vertical and radial pores through bulky cryogels. Translucent isotropic and anisotropic architectures of radial or vertical pores are fabricated with tunable mechanical response. Furthermore, 3D combinations of vertical and radial pore orientations are coded at the centimeter scale. Cell morphological response to macro-architectures is demonstrated. The formation of endothelial segments, CYP450 activity, and osteopontin expression, as liver fibrosis biomarkers, present direct response and specific cellular organization within radial, linear, and random architectures. These results unlock the potential of ice-templating demonstrating the relevance of macro-architectures to model tissues, and broad possibilities for drug testing, tissue engineering, and regenerative medicine.


Subject(s)
Cryogels , Tissue Engineering , Coculture Techniques , Porosity , Regenerative Medicine , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...