Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Gels ; 10(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38786224

ABSTRACT

Nanostructured lipid carriers (NLCs) have the potential to increase the bioavailability and reduce the side effects of docetaxel (DTX). However, only a small fraction of nanoparticles given intravenously can reach a solid tumor. In situ-forming gels combined with nanoparticles facilitate local administration and promote drug retention at the tumor site. Injectable hydrogels based on poloxamer 407 are excellent candidates for this hybrid nanoparticle-hydrogel system because of their thermoresponsive behavior and biocompatibility. Therefore, this work aimed to develop injectable poloxamer hydrogels containing NLCs for intratumoral delivery of DTX. To ensure sterility, the obtained hydrogels were autoclaved (121 °C for 15 min) after preparation. Then, the incorporation of NLCs into the poloxamer hydrogels and the impact of steam sterilization on the nanocomposite hydrogels were evaluated concerning sol-gel transition, injectability, and physicochemical stability. All formulations were extruded through the tested syringe-needle systems with acceptable force (2.2-13.4 N) and work (49.5-317.7 N·mm) of injection. Following steam sterilization, injection became easier in most cases, and the physicochemical properties of all hydrogels remained practically unchanged according to the spectroscopical and thermal analysis. The rheological evaluation revealed that the nanocomposite hydrogels were liquid at 25 °C and underwent rapid gelation at 37 °C. However, their sterilized counterparts gelled at 1-2 °C above body temperature, suggesting that the autoclaving conditions employed had rendered these nanocomposite hydrogels unsuitable for local drug delivery.

2.
Life (Basel) ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672759

ABSTRACT

The specific interaction between cell surface receptors and corresponding antibodies has driven opportunities for developing targeted cancer therapies using nanoparticle systems. It is challenging to design and develop such targeted nanomedicines using antibody ligands, as the final nanoconjugate's specificity hinges on the cohesive functioning of its components. The multicomponent nature of antibody-conjugated nanoparticles also complicates the characterization process. Regardless of the type of nanoparticle, it is essential to perform physicochemical characterization to establish a solid foundation of knowledge and develop suitable preclinical studies. A meaningful physicochemical evaluation of antibody-conjugated nanoparticles should include determining the quantity and orientation of the antibodies, confirming the antibodies' integrity following attachment, and assessing the immunoreactivity of the obtained nanoconjugates. In this review, the authors describe the various techniques (electrophoresis, spectroscopy, colorimetric assays, immunoassays, etc.) used to analyze the physicochemical properties of nanoparticles functionalized with antibodies and discuss the main results.

3.
Gels ; 9(10)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37888375

ABSTRACT

Proteins and peptides are potential therapeutic agents, but their physiochemical properties make their use as drug substances challenging. Hydrogels are hydrophilic polymeric networks that can swell and retain high amounts of water or biological fluids without being dissolved. Due to their biocompatibility, their porous structure, which enables the transport of various peptides and proteins, and their protective effect against degradation, hydrogels have gained prominence as ideal carriers for these molecules' delivery. Particularly, stimuli-responsive hydrogels exhibit physicochemical transitions in response to subtle modifications in the surrounding environment, leading to the controlled release of entrapped proteins or peptides. This review is focused on the application of these hydrogels in protein and peptide delivery, including a brief overview of therapeutic proteins and types of stimuli-responsive polymers.

4.
Gels ; 9(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37504472

ABSTRACT

The widespread push to invest in local cancer therapies comes from the need to overcome the limitations of systemic treatment options. In contrast to intravenous administration, local treatments using intratumoral or peritumoral injections are independent of tumor vasculature and allow high concentrations of therapeutic agents to reach the tumor site with minimal systemic toxicity. Injectable biodegradable hydrogels offer a clear advantage over other delivery systems because the former requires no surgical procedures and promotes drug retention at the tumor site. More precisely, in situ gelling systems based on poloxamers have garnered considerable attention due to their thermoresponsive behavior, biocompatibility, ease of preparation, and possible incorporation of different anticancer agents. Therefore, this review focuses on the use of injectable thermoresponsive hydrogels based on poloxamers and their physicochemical and biological characterization. It also includes a summary of these hydrogel applications in local cancer therapies using chemotherapy, phototherapy, immunotherapy, and gene therapy.

5.
Gels ; 9(5)2023 May 06.
Article in English | MEDLINE | ID: mdl-37232977

ABSTRACT

Hydrogels based on stimuli-responsive polymers can change their characteristics in response to small variations in environmental conditions, such as temperature, pH, and ionic strength, among others. In the case of some routes of administration, such as ophthalmic and parenteral, the formulations must meet specific requirements, namely sterility. Therefore, it is essential to study the effect of the sterilization method on the integrity of smart gel systems. Thus, this work aimed to study the effect of steam sterilization (121 °C, 15 min) on the properties of hydrogels based on the following stimuli-responsive polymers: Carbopol® 940, Pluronic® F-127, and sodium alginate. The properties of the prepared hydrogels-pH, texture, rheological behavior, and sol-gel phase transition-were evaluated to compare and identify the differences between sterilized and non-sterilized hydrogels. The influence of steam sterilization on physicochemical stability was also investigated by Fourier-transform infrared spectroscopy and differential scanning calorimetry. The results of this study showed that the Carbopol® 940 hydrogel was the one that suffered fewer changes in the studied properties after sterilization. By contrast, sterilization was found to cause slight changes in the Pluronic® F-127 hydrogel regarding gelation temperature/time, as well as a considerable decrease in the viscosity of the sodium alginate hydrogel. There were no considerable differences in the chemical and physical characteristics of the hydrogels after steam sterilization. It is possible to conclude that steam sterilization is suitable for Carbopol® 940 hydrogels. Contrarily, this technique does not seem adequate for the sterilization of alginate or Pluronic® F-127 hydrogels, as it could considerably alter their properties.

6.
Pharmaceutics ; 15(1)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36678845

ABSTRACT

Nanotechnology takes the lead in providing new therapeutic options for cancer patients. In the last decades, lipid-based nanoparticles-solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), liposomes, and lipid-polymer hybrid nanoparticles-have received particular interest in anticancer drug delivery to solid tumors. To improve selectivity for target cells and, thus, therapeutic efficacy, lipid nanoparticles have been functionalized with antibodies that bind to receptors overexpressed in angiogenic endothelial cells or cancer cells. Most papers dealing with the preclinical results of antibody-conjugated nanoparticles claim low systemic toxicity and effective tumor inhibition, which have not been successfully translated into clinical use yet. This review aims to summarize the current "state-of-the-art" in anticancer drug delivery using antibody-functionalized lipid-based nanoparticles. It includes an update on promising candidates that entered clinical trials and some explanations for low translation success.

7.
Braz. J. Pharm. Sci. (Online) ; 58: e191093, 2022. tab, graf
Article in English | LILACS | ID: biblio-1383999

ABSTRACT

Abstract In recent years, improvements have been made, through biotechnological processes, in the production and development of peptides capable of increasing collagen and elastin synthesis for anti-aging skin care. However, proteins have many limitations due to their structural, chemical and physical fragility to external aggressions, which may cause conformational changes, leading to loss of biological activity. Therefore, it is important to create delivery systems that protect these biomolecules from damage, allowing them to reach their target. This work aimed to develop a system able to carry bovine serum albumin (BSA), used as a model of a protein, and to incorporate this system in a semisolid formulation suitable for skin application. A microemulgel based on a solid-in-oil-in-water (S/O/W) microemulsion was prepared. Firstly, the association efficiency (AE) of lyophilized BSA-sucrose ester complex and the size of S/O nanodispersion were assessed; then, the characterization and stability evaluation of the final semisolid formulation through evaluation of pH, texture and rheological behavior were performed. The average value of AE was 54.74% ± 2.17. It was possible to develop an S/O/W microemulsion, which allowed the subsequent development of an S/O/W microemulgel that assured suitable pH, texture and rheological characteristics for skin application.


Subject(s)
Serum Albumin, Bovine , Proteins/adverse effects , Collagen , Peptides/agonists , Skin/drug effects , Biological Products , Aging , Hydrogen-Ion Concentration
8.
Int J Pharm ; 533(2): 455-462, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28412446

ABSTRACT

The lipid nanoparticles, namely Nanostructured Lipid Carriers (NLC), as drug delivery systems have been investigated for several years. One of the delivery routes for which these carriers can be applied is buccal administration. However, the liquid dispersions of lipid nanoparticles can be rapidly removed from oral cavity by saliva. Thus, the development of a system that allows increased retention time on the mucosa is necessary. For this reason, the development of mucoadhesive preparations for buccal administration of lipid nanoparticles becomes important. Hydrogels prepared with mucoadhesive polymers (Carbopol® 980 and polycarbophil) constitute a promising option. The aim of this work was to develop mucoadhesive buccal hydrogels with NLC, using ibuprofen as a model drug. The obtained results showed that the developed NLC dispersions presented particles in the nanometric size range, with low polydispersity index values and efficient ability for the entrapment of the model drug. Moreover, the incorporation of NLC in hydrogels of mucoadhesive polymers resulted in preparations with desirable rheological features as well as texture (firmness and adhesiveness) and mucoadhesive properties, which could benefit the therapeutic efficacy, by increasing the residence time and easiness for topical application in the buccal mucosa. Additionally, the developed preparations exhibited sustained drug release as intended for these systems.


Subject(s)
Diglycerides/chemistry , Hydrogels/chemistry , Ibuprofen/chemistry , Nanoparticles/chemistry , Triglycerides/chemistry , Acrylic Resins/chemistry , Adhesiveness , Administration, Buccal , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Drug Liberation , Mouth Mucosa
SELECTION OF CITATIONS
SEARCH DETAIL
...