Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 381(6654): 216-221, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37440632

ABSTRACT

The domestication of forest trees for a more sustainable fiber bioeconomy has long been hindered by the complexity and plasticity of lignin, a biopolymer in wood that is recalcitrant to chemical and enzymatic degradation. Here, we show that multiplex CRISPR editing enables precise woody feedstock design for combinatorial improvement of lignin composition and wood properties. By assessing every possible combination of 69,123 multigenic editing strategies for 21 lignin biosynthesis genes, we deduced seven different genome editing strategies targeting the concurrent alteration of up to six genes and produced 174 edited poplar variants. CRISPR editing increased the wood carbohydrate-to-lignin ratio up to 228% that of wild type, leading to more-efficient fiber pulping. The edited wood alleviates a major fiber-production bottleneck regardless of changes in tree growth rate and could bring unprecedented operational efficiencies, bioeconomic opportunities, and environmental benefits.


Subject(s)
Gene Editing , Lignin , Populus , Wood , Carbohydrates/analysis , Lignin/genetics , Wood/genetics , CRISPR-Cas Systems , Populus/genetics , Paper , Sustainable Growth
2.
Cell Microbiol ; 20(2)2018 02.
Article in English | MEDLINE | ID: mdl-29113016

ABSTRACT

Cryptococcus neoformans is a basidiomycetous yeast and the cause of cryptococcosis in immunocompromised individuals. The most severe form of the disease is meningoencephalitis, which is one of the leading causes of death in HIV/AIDS patients. In order to access the central nervous system, C. neoformans relies on the activity of certain virulence factors such as urease, which allows transmigration through the blood-brain barrier. In this study, we demonstrate that the calcium transporter Pmc1 enables C. neoformans to penetrate the central nervous system, because the pmc1 null mutant failed to infect and to survive within the brain parenchyma in a murine systemic infection model. To investigate potential alterations in transmigration pathways in these mutants, global expression profiling of the pmc1 mutant strain was undertaken, and genes associated with urease, the Ca2+ -calcineurin pathway, and capsule assembly were identified as being differentially expressed. Also, a decrease in urease activity was observed in the calcium transporter null mutants. Finally, we demonstrate that the transcription factor Crz1 regulates urease activity and that the Ca2+ -calcineurin signalling pathway positively controls the transcription of calcium transporter genes and factors related to transmigration.


Subject(s)
Central Nervous System/microbiology , Cryptococcus neoformans/metabolism , Cryptococcus neoformans/pathogenicity , Fungal Proteins/metabolism , Plasma Membrane Calcium-Transporting ATPases/metabolism , Animals , Biological Transport/physiology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/microbiology , Brain/metabolism , Brain/microbiology , Calcineurin/metabolism , Calcium/metabolism , Cell Line , Cryptococcosis/metabolism , Cryptococcosis/microbiology , Disease Models, Animal , Female , Human Umbilical Vein Endothelial Cells , Humans , Meningoencephalitis/metabolism , Meningoencephalitis/microbiology , Mice , Mice, Inbred BALB C , Vacuoles/metabolism , Vacuoles/microbiology , Virulence/physiology , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...