Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 2292, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783162

ABSTRACT

The lamellar-to-sponge phase transition of fluorescently labelled large unilamellar vesicles (LUVs) of the non-ionic surfactant triethylene glycol mono n-decyl ether (C10E3) was investigated in situ by confocal laser scanning microscopy (CLSM). Stable dispersions of micrometer-sized C10E3 LUVs were prepared at 20 °C and quickly heated at different temperatures close to the lamellar-to-sponge phase transition temperature. Phase transition of the strongly fluctuating individual vesicles into micrometre-sized sponge phase droplets was observed to occur via manyfold multilamellar morphologies with increasing membrane confinement through inter- and intra- lamellar fusion. The very low bending rigidity and lateral tension of the C10E3 bilayer were supported by quantitative image analysis of a stable fluctuating membrane using both flicker noise spectroscopy and spatial autocorrelation function.

2.
Colloids Surf B Biointerfaces ; 145: 576-585, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27281243

ABSTRACT

Ureases are metalloenzymes that catalyze the hydrolysis of urea to ammonia and carbon dioxide. Jack bean (Canavalia ensiformis) produces three isoforms of urease (Canatoxin, JBU and JBURE-II). Canatoxin and JBU display several biological properties independent of their ureolytic activity, such as neurotoxicity, exocytosis-inducing and pro-inflammatory effects, blood platelets activation, insecticidal and antifungal activities. The Canatoxin entomotoxic activity is mostly due to an internal peptide, named pepcanatox, released upon the hydrolysis of the protein by insect cathepsin-like digestive enzymes. Based on pepcanatox sequence, Jaburetox-2Ec was produced in Escherichia coli. JBU and its peptides were shown to permeabilize membranes through an ion channel-based mechanism. Here we studied the JBU and Jaburetox-2Ec interaction with platelet-like multilamellar liposomes (PML) using Dynamic Light Scattering and Small Angle X-ray Scattering techniques. We also analyzed the interaction of JBU with giant unilamellar vesicles (GUVs) using Fluorescence Microscopy. The interaction of vesicles with JBU led to a slight reduction of hydrodynamic radius, and caused an increase in the lamellar repeat distance of PML, suggesting a membrane disordering effect. In contrast, Jaburetox-2Ec decreased the lamellar repeat distance of PML membranes, while also diminishing their hydrodynamic radius. Fluorescence microscopy showed that the interaction of GUVs with JBU caused membrane perturbation with formation of tethers. In conclusion, JBU can interact with PML, probably by inserting its Jaburetox "domain" into the PML external membrane. Additionally, the interaction of Jaburetox-2Ec affects the vesicle's internal bilayers and hence causes more drastic changes in the PML membrane organization in comparison with JBU.


Subject(s)
Canavalia/enzymology , Liposomes/metabolism , Peptides/metabolism , Urease/metabolism , Dynamic Light Scattering , Microscopy, Fluorescence , Scattering, Small Angle , X-Ray Diffraction
3.
Phys Rev Lett ; 105(8): 088101, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20868131

ABSTRACT

Stained end-grafted DNA molecules about 20 µm long are scraped away and stretched out by the spreading front of a bioadhesive vesicle. Tethered biotin ligands bind the vesicle bilayer to a streptavidin substrate, stapling the DNAs into frozen confinement paths. Image analysis of the stapled DNA gives access, within optical resolution, to the local stretching values of individual DNA molecules swept by the spreading front, and provides evidence of self-entanglements.


Subject(s)
Adhesives/chemistry , Biomimetic Materials/chemistry , DNA/chemistry , Friction , Unilamellar Liposomes/chemistry , Animals , Imaging, Three-Dimensional , Nucleic Acid Conformation
4.
Soft Matter ; 4(4): 828-832, 2008 Mar 20.
Article in English | MEDLINE | ID: mdl-32907189

ABSTRACT

Cell-adhesion events involve often the formation of a contact region between phospholipid membranes decorated with a variety of bio-macromolecular species. We mimic here such hairy bio-adhesive contact zones by spreading phospholipid vesicles onto surfaces carpeted with end-grafted λ-phage DNA. Our study reveals that the spreading front acts as a scraper that strongly stretches the DNA molecules, and that the multiple bonds created during vesicle spreading effectively staple the stretched chains in the gap between the membrane and the substrate. The scraping and stapling mechanisms revealed here for the long DNA molecules are expected to also play a role in actual bio-adhesion events of cell walls and tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...