Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cytotherapy ; 26(7): 700-713, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38483360

ABSTRACT

BACKGROUND AIMS: Parkinson's disease (PD) is the second most common neurodegenerative disorder. The etiology of the disease remains largely unknown, but evidence have suggested that the overexpression and aggregation of alpha-synuclein (α-syn) play key roles in the pathogenesis and progression of PD. Mesenchymal stromal cells (MSCs) have been earning attention in this field, mainly due to their paracrine capacity. The bioactive molecules secreted by MSCs, i.e. their secretome, have been associated with enhanced neuronal survival as well as a strong modulatory capacity of the microenvironments where the disease develops. The selection of the appropriate animal model is crucial in studies of efficacy assessment. Given the involvement of α-syn in the pathogenesis of PD, the evidence generated from the use of animal models that develop a pathologic phenotype due to the action of this protein is extremely valuable. Therefore, in this work, we established an animal model based on the viral vector-mediated overexpression of A53T α-syn and studied the impact of the secretome of bone marrow mesenchymal stromal cells MSC(M) as a therapeutic strategy. METHODS: Adult male rats were subjected to α-syn over expression in the nigrostriatal pathway to model dopaminergic neurodegeneration. The impact of locally administered secretome treatment from MSC(M) was studied. Motor impairments were assessed throughout the study coupled with whole-region (striatum and substantia nigra) confocal microscopy evaluation of histopathological changes associated with dopaminergic neurodegeneration and glial cell reactivity. RESULTS: Ten weeks after lesion induction, the animals received secretome injections in the substantia nigra pars compacta (SNpc) and striatum (STR). The secretome used was produced from bone marrow mesenchymal stromal cells MSC(M) expanded in a spinner flask (SP) system. Nine weeks later, animals that received the viral vector containing the gene for A53T α-syn and treated with vehicle (Neurobasal-A medium) presented dopaminergic cell loss in the SNpc and denervation in the STR. The treatment with secretome significantly reduced the levels of α-syn in the SNpc and protected the dopaminergic neurons (DAn) within the SNpc and STR. CONCLUSIONS: Our results are aligned with previous studies in both α-syn Caenorhabditis elegans models, as well as 6-OHDA rodent model, revealing that secretome exerted a neuroprotective effect. Moreover, these effects were associated with a modulation of microglial reactivity supporting an immunomodulatory role for the factors contained within the secretome. This further supports the development of new studies exploring the effects and the mechanism of action of secretome from MSC(M) against α-syn-induced neurotoxicity.


Subject(s)
Disease Models, Animal , Mesenchymal Stem Cells , Microglia , Neuroprotection , Parkinson Disease , alpha-Synuclein , Animals , Mesenchymal Stem Cells/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Rats , Male , Microglia/metabolism , Parkinson Disease/therapy , Parkinson Disease/metabolism , Secretome/metabolism , Dopaminergic Neurons/metabolism , Mesenchymal Stem Cell Transplantation/methods , Cells, Cultured , Humans
2.
Biomedicines ; 11(5)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37238911

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by the degeneration of the dopamine (DA) neurons in the substantia nigra pars compacta, leading to a loss of DA in the basal ganglia. The presence of aggregates of alpha-synuclein (α-synuclein) is seen as the main contributor to the pathogenesis and progression of PD. Evidence suggests that the secretome of mesenchymal stromal cells (MSC) could be a potential cell-free therapy for PD. However, to accelerate the integration of this therapy in the clinical setting, there is still the need to develop a protocol for the large-scale production of secretome under good manufacturing practices (GMP) guidelines. Bioreactors have the capacity to produce large quantities of secretomes in a scalable manner, surpassing the limitations of planar static culture systems. However, few studies focused on the influence of the culture system used to expand MSC, on the secretome composition. In this work, we studied the capacity of the secretome produced by bone marrow-derived mesenchymal stromal cells (BMSC) expanded in a spinner flask (SP) and in a Vertical-Wheel™ bioreactor (VWBR) system, to induce neurodifferentiation of human neural progenitor cells (hNPCs) and to prevent dopaminergic neuron degeneration caused by the overexpression of α-synuclein in one Caenorhabditis elegans model of PD. Results showed that secretomes from both systems were able to induce neurodifferentiation, though the secretome produced in the SP system had a greater effect. Additionally, in the conditions of our study, only the secretome produced in SP had a neuroprotective potential. Lastly, the secretomes had different profiles regarding the presence and/or specific intensity of different molecules, namely, interleukin (IL)-6, IL-4, matrix metalloproteinase-2 (MMP2), and 3 (MMP3), tumor necrosis factor-beta (TNF-ß), osteopontin, nerve growth factor beta (NGFß), granulocyte colony-stimulating factor (GCSF), heparin-binding (HB) epithelial growth factor (EGF)-like growth factor (HB-EGF), and IL-13. Overall, our results suggest that the culture conditions might have influenced the secretory profiles of cultured cells and, consequently, the observed effects. Additional studies should further explore the effects that different culture systems have on the secretome potential of PD.

3.
Eur J Cell Biol ; 95(6-7): 208-18, 2016.
Article in English | MEDLINE | ID: mdl-27083410

ABSTRACT

Colorectal cancer is a major health problem worldwide with urgent need for new and effective anti-cancer approaches that allow treating, increasing survival and improving life quality of patients. At pharmacological concentrations, ascorbic acid (AA) exerts a selective cytotoxic effect, whose mechanism of cytotoxicity remains unsolved. It has been suggested that it depends on the production of extracellular hydrogen peroxide, using ascorbate radical as an intermediate. The aim of this study was to evaluate the effects induced by AA in three colon cancer cell lines, as well as, possible cell death mechanisms involved. Our results showed that pharmacological concentrations of AA induce anti-proliferative, cytotoxic and genotoxic effects on three colon cancer cell lines under study. We also found that AA can induce cell death by an increment of oxidative stress, but also mediating a ROS-independent mechanism, as observed in LS1034 cells. This work explores AA anti-tumoral effects and highlights its applicability in the treatment of CC, underlying the importance of proceeding to clinical trials.


Subject(s)
Ascorbic Acid/pharmacology , Colonic Neoplasms/drug therapy , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Humans , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...