Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 802: 149867, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34469861

ABSTRACT

The present study performed geochemical fractioning of major and minor elements in a cross-shelf gradient of the Abrolhos Bank, where the largest and most diverse coral reefs in the South Atlantic are concentrated. The fractioning was performed using sequential extractions to determine the degree of availability and toxicity of the elements. The mobility pattern of the elements investigated were in the following order: Ca > Mn > Pb > Cr > Zn > Fe > V > Cu > Ba>Al > Ni > Ti. For elements, such as (Ti, Ni, Al, Ba, Cu, V, Fe, Zn, Cr, Pb), the highest concentrations were in the residual phase at some sampling sites. As established by Environment Canada (Threshold Effect Level - TEL and Probable Effect Level - PEL), Ba, Cr, and Ni produced values higher than the limits, associated with higher concentrations of other elements. In addition, significant proportions of these elements were found in mobile phases in the same sites. Thus, more rigorous measures are critical to avoid alarming levels of chronic environmental pollution inside and outside protected areas of the region. To enhance the sustainability of the region, more effective enforcement is crucial to prevent anthropic contamination that may threaten its biodiversity. The results provide the baseline for future studies regarding the potential impacts of the breach of the tailings dam in the region of Mariana, Minas Gerais.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 813: 151889, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34826491

ABSTRACT

Mangroves under macro-tidal regimes are global carbon sequestration hotspots but the microbial drivers of biogeochemical cycles remain poorly understood. Here, we investigate the drivers of mangrove microbial community composition across a porewater-creek-estuary-ocean continuum. Observations were performed on the Amazon region in one of the largest mangrove systems worldwide with effective sequestration of organic carbon buried in soils and dissolved carbon via outwelling to the ocean. The potential export to the adjacent oceanic region ranged from 57 to 380 kg of dissolved and particulate organic carbon per second (up to 33 thousand tons C per day). Macro tides modulated microbial communities and their metabolic processes, e.g., anoxygenic phototrophy, sulfur, and nitrogen cycling. Respiration, sulfur metabolism and dissolved organic carbon (DOC) levels were linked to functional groups and microbial cell counts. Total microbial counts decreased and cyanobacteria counts peaked in the spring tide. The microbial groups driving carbon, nitrogen, sulfur and methane cycles were consistent across all spatial scales. Taxonomic groups engaged in sulfur cycling (Allochromatium, Desulfovibrio, and Thibacillus) within mangroves were abundant at all scales. Tidally-driven porewater exchange within mangroves drove a progressive increase of sulfur cycle taxonomic groups and their functional genes both temporally (tidal cycles) and spatially (from mangrove porewater to continental shelf). Overall, we revealed a unified and consistent response of microbiomes at different spatial and temporal scales to tidally-driven mangrove porewater exchange.


Subject(s)
Microbiota , Carbon , Estuaries , Nitrogen , Sulfur , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...