Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chem Rev ; 124(6): 3392-3415, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38466339

ABSTRACT

Magnetic ionic liquids (MILs) stand out as a remarkable subclass of ionic liquids (ILs), combining the desirable features of traditional ILs with the unique ability to respond to external magnetic fields. The incorporation of paramagnetic species into their structures endows them with additional attractive features, including thermochromic behavior and luminescence. These exceptional properties position MILs as highly promising materials for diverse applications, such as gas capture, DNA extractions, and sensing technologies. The present Review synthesizes key experimental findings, offering insights into the structural, thermal, magnetic, and optical properties across various MIL families. Special emphasis is placed on unraveling the influence of different paramagnetic species on MILs' behavior and functionality. Additionally, the Review highlights recent advancements in computational approaches applied to MIL research. By leveraging molecular dynamics (MD) simulations and density functional theory (DFT) calculations, these computational techniques have provided invaluable insights into the underlying mechanisms governing MILs' behavior, facilitating accurate property predictions. In conclusion, this Review provides a comprehensive overview of the current state of research on MILs, showcasing their special properties and potential applications while highlighting the indispensable role of computational methods in unraveling the complexities of these intriguing materials. The Review concludes with a forward-looking perspective on the future directions of research in the field of magnetic ionic liquids.

2.
Molecules ; 28(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37241851

ABSTRACT

Toxic heavy metals are priority pollutants in wastewater, commonly present in dangerous concentrations in many places across the globe. Although in trace quantities copper is a heavy metal essential to human life, in excess it causes various diseases, whereby its removal from wastewater is a necessity. Among several reported materials, chitosan is a highly abundant, non-toxic, low-cost, biodegradable polymer, comprising free hydroxyl and amino groups, that has been directly applied as an adsorbent or chemically modified to increase its performance. Taking this into account, reduced chitosan derivatives (RCDs 1-4) were synthesised by chitosan modification with salicylaldehyde, followed by imine reduction, characterised by RMN, FTIR-ATR, TGA and SEM, and used to adsorb Cu(II) from water. A reduced chitosan (RCD3), with a moderate modification percentage (43%) and a high imine reduction percentage (98%), proved to be more efficient than the remainder RCDs and even chitosan, especially at low concentrations under the best adsorption conditions (pH 4, RS/L = 2.5 mg mL-1). RCD3 adsorption data were better described by the Langmuir-Freundlich isotherm and the pseudo-second-order kinetic models. The interaction mechanism was assessed by molecular dynamics simulations, showing that RCDs favour Cu(II) capture from water compared to chitosan, due to a greater Cu(II) interaction with the oxygen of the glucosamine ring and the neighbouring hydroxyl groups.

3.
Molecules ; 27(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35630549

ABSTRACT

Intermolecular forces, determined by the critical balance of interacting components having physical and chemical natures, control most of the static and dynamic properties of matter such as their existence in solid, liquid and gaseous phases, with their relative stability, and their chemical reactivity [...].


Subject(s)
Nanostructures , Nanostructures/chemistry
4.
Molecules ; 27(8)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35458778

ABSTRACT

Computational simulation of colloidal systems make use of empirical interaction potentials that are founded in well-established theory. In this work, we have performed parallel tempering Monte Carlo (PTMC) simulations to calculate heat capacity and to assess structural transitions, which may occur in charged colloidal clusters whose effective interactions are described by a sum of pair potentials with attractive short-range and repulsive long-range components. Previous studies on these systems have shown that the global minimum structure varies from spherical-type shapes for small-size clusters to Bernal spiral and "beaded-necklace" shapes at intermediate and larger sizes, respectively. In order to study both structural transitions and dissociation, we have organized the structures appearing in the PTMC calculations by three sets according to their energy: (i) low-energy structures, including the global minimum; (ii) intermediate-energy "beaded-necklace" motifs; (iii) high-energy linear and branched structures that characterize the dissociative clusters. We observe that, depending on the cluster, either peaks or shoulders on the heat-capacity curve constitute thermodynamics signatures of dissociation and structural transitions. The dissociation occurs at T=0.20 for all studied clusters and it is characterized by the appearance of a significant number of linear structures, while the structural transitions corresponding to unrolling the Bernal spiral are quite dependent on the size of the colloidal system.

6.
J Phys Chem A ; 123(13): 2867-2873, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30855959

ABSTRACT

The microsolvation of Li+ by both argon and krypton atoms has been studied based on a new potential energy surface that includes two- and three-body interactions; the potential terms involving the lithium ion were calibrated with CCSD(T)/aug-cc-pVQZ energies after being corrected for the basis-set superposition error. The structures of the Li+Ar nKr m ([Formula: see text]) clusters arising from global optimization show a first solvation shell preferentially occupied by krypton atoms. These binary-solvent microsolvation clusters are most stable when the total number of krypton (argon) atoms occupy the first (second) solvation shell.

7.
Phys Chem Chem Phys ; 20(24): 16877-16882, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29877540

ABSTRACT

Correction for 'Solvation of Li+ by argon: how important are three-body forces?' by Frederico V. Prudente et al., Phys. Chem. Chem. Phys., 2017, 19, 25707-25716.

8.
J AOAC Int ; 101(5): 1437-1447, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29724263

ABSTRACT

Planar chromatography and related techniques [micro-planar chromatography, micro-TLC, or paper-based microfluidic devices (µPADs)] present several advantages in analytical applications, such as simplicity, low cost of analysis, and the ability to work with raw complex samples without the involvement of time-consuming prepurification steps. By using commonly applied planar chromatographic systems and µPADs devices, stationary phases (silica and cellulose based), different solvent mixtures (methanol-water and dichloromethane-methanol), and proportions varying from 0 to 100% (v/v), micro-TLC migration profiles of several dyes described in terms of characteristic of chromatographic parameters (retardation factor, peak base width, and asymmetry factor) were investigated. Combining these results with some quantum mechanics calculated properties for each solute (dipole moment, polarizability), and by using the data mining approach, we modeled this overall chromatographic behavior in order to describe experimental data. With this approach, we were able to predict with reasonable confidence some chromatographic properties. This effort its crucial in order to (1) optimize solute elution, (2) increase mixture resolution, and (3) identify some molecular properties of analytes for designing simple micro-TLC. It is hoped that the presented nonhypothesis-driven data-mining approach can be helpful for understanding the chromatographic behavior of dyes on silica and cellulose adsorbents using the simplest mobile phases. This should be helpful for further designing the micro-TLC separation systems or µPADs quantification devices based on cellulose and related biopolymers and considering dye compounds as analytes for separation and sensing molecules.


Subject(s)
Cellulose/chemistry , Chromatography, Thin Layer/methods , Coloring Agents/analysis , Silicon Dioxide/chemistry , Data Mining/methods , Methanol/chemistry , Solvents/chemistry , Water/chemistry
9.
Phys Chem Chem Phys ; 19(37): 25707-25716, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28913521

ABSTRACT

A new analytical potential for Li+Ar2 including three-body interactions has been modeled by employing ab initio energies that were calculated within the CCSD(T) framework and a quadruple-zeta basis-set (i.e., cc-pVQZ for lithium and aug-cc-pVQZ for argon) and, then, corrected for the basis-set superposition error (BSSE) with the counterpoise method. Departing from this function, we have constructed the potential energy surface for Li+Arn clusters by summing over all two-body and three-body terms. We have employed our evolutionary algorithm (EA) to perform a global geometry optimization that allows for the study of a Li+ ion microsolvated with argon atoms. For the smaller clusters, the putative global minimum geometry obtained for the analytical potential has been used as a starting point for an ab initio optimization at the MP2 level. For clusters up to n = 10, the energetics and structures from the analytical potential energy surface (PES) that includes three-body interactions show good agreement with the corresponding ones optimized at the ab initio level. Removing the three-body terms from the analytical PES leads to global minima that fail to represent the main energetic features and the structures become wrong in the case of the Li+Ar2, Li+Ar3 and Li+Ar10 clusters. For n > 10, the comparison between potentials with and without three-body forces shows significant structural and energetic differences for most of the cluster sizes.

10.
J Comput Chem ; 34(6): 505-17, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23108580

ABSTRACT

We performed a global minimum search of mixed rare-gas clusters by applying an evolutionary algorithm (EA), which was recently proposed for binary atomic systems (Marques and Pereira, Chem. Phys. Lett. 2010, 485, 211). Before being applied to the potentials used in this work, the EA was further tested against results previously reported for the Ar(N)Xe(38-N) clusters and several new putative global minima were discovered. We employed either simple Lennard-Jones (LJ) potentials or more realistic functions to describe pair interactions in Ar(N)Kr(38-N), Ar(N)Xe(38-N), and Kr(N)Xe(38-N) clusters. The long-range tail of the pair-potentials shows some influence on the energetic features and shape of the structure of clusters. In turn, core-shell type structures are mostly observed for global minima of the binary rare-gas clusters, for both accurate and LJ potentials. However, the long-range tail of the potential may have influence on the type of atoms that segregate on the surface or form the core of the cluster. While relevant differences for the preferential site occupancy occur between the two potentials for Ar(N)Kr(38-N) (for N > 21), the type of atoms that segregate on the surface for Ar(N)Xe(38-N) and Kr(N)Xe(38-N) clusters is unaffected by the accuracy of the long-range part of the interaction in almost all cases. Moreover, the global minimum search for model-potentials in binary systems reveals that the surface-site occupancy is mainly determined by the combination of two parameters: the size ratio of the two types of particles forming the cluster and the minimum-energy ratio corresponding to the pair-interactions between unlike atoms.


Subject(s)
Algorithms , Argon/chemistry , Krypton/chemistry , Quantum Theory , Xenon/chemistry , Molecular Structure
11.
J Chem Phys ; 123(15): 154311, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16252952

ABSTRACT

Quasiclassical trajectory calculations are employed to investigate the dynamics of collision-induced dissociation (CID) of Cr(CO)6 + with Xe atoms at collision energies ranging from 1.3 to 5.0 eV. The trajectory simulations show that direct elimination of CO ligands, during the collision, becomes increasingly important as the collision energy increases. In a significant number of cases, this shattering mechanism is accompanied with a concomitant formation of a transient Xe-Cr(CO)x +(x<6) complex. The calculated results are in very good agreement with the experimental results presented previously [F. Muntean and P. B. Armentrout, J. Chem. Phys. 115, 1213 (2001)]. In particular, the computed cross sections and scattering maps for the product ions Cr(CO)x +(x=3-5) compare very favorably with the reported experimental data. However, in contrast with the conclusions of the previous study, the present calculations suggest that CID dynamics for this system exhibits a significant impulsive character rather than proceeding via a complex surviving more than a rotational period.

12.
J Chem Phys ; 121(6): 2571-7, 2004 Aug 08.
Article in English | MEDLINE | ID: mdl-15281855

ABSTRACT

Quasiclassical trajectory calculations were carried out to study the dynamics of energy transfer and collision-induced dissociation (CID) of CH(3)SH(+) + Ar at collision energies ranging from 4.34 to 34.7 eV. The relative abundances calculated for the most relevant product ions are found to be in good agreement with experiment, except for the lowest energies investigated. In general, the dissociation to form CH(3)(+) + SH is the dominant channel, even though it is not among the energetically favored reaction pathways. The results corroborate that this selective dissociation observed upon collisional activation arises from a more efficient translational to vibrational energy transfer for the low-frequency C-S stretching mode than for the high-frequency C-H stretching modes, together with weak couplings between the low- and high-frequency modes of vibration. The calculations suggest that CID takes place preferentially by a direct CH(3)(+) + SH detachment, and more efficiently when the Ar atom collides with the methyl group-side of CH(3)SH(+).

SELECTION OF CITATIONS
SEARCH DETAIL
...