Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Brain Mapp ; 44(1): 82-93, 2023 01.
Article in English | MEDLINE | ID: mdl-36196782

ABSTRACT

A multiband (MB) echo-planar imaging (EPI) sequence is compared to a multiband multiecho (MBME) EPI protocol to investigate differences in sensitivity for task functional magnetic resonance imaging (fMRI) at 3 T. Multiecho sampling improves sensitivity in areas where single-echo-EPI suffers from dropouts. However, It requires in-plane acceleration to reduce the echo train length, limiting the slice acceleration factor and the temporal and spatial resolution Data were acquired for both protocols in two sessions 24 h apart using an adapted color-word interference Stroop task. Besides protocol comparison statistically, we performed test-retest reliability across sessions for different protocols and denoising methods. We evaluated the sensitivity of two different echo-combination strategies for MBME-EPI. We examined the performance of three different data denoising approaches: "Standard," "AROMA," and "FIX" for MB and MBME, and assessed whether a specific method is preferable. We consider using an appropriate autoregressive model order within the general linear model framework to correct TR differences between the protocols. The comparison between protocols and denoising methods showed at group level significantly higher mean z-scores and the number of active voxels for MBME in the motor, subcortical and medial frontal cortices. When comparing different echo combinations, our results suggest that a contrast-to-noise ratio weighted echo combination improves sensitivity in MBME compared to simple echo-summation. This study indicates that MBME can be a preferred protocol in task fMRI at spatial resolution (≥2 mm), primarily in medial prefrontal and subcortical areas.


Subject(s)
Echo-Planar Imaging , Magnetic Resonance Imaging , Humans , Echo-Planar Imaging/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Brain Mapping/methods
2.
Neuroimage ; 218: 116783, 2020 09.
Article in English | MEDLINE | ID: mdl-32413462

ABSTRACT

Temporally independent functional modes (TFMs) are functional brain networks identified based on their temporal independence. The rationale behind identifying TFMs is that different functional networks may share a common anatomical infrastructure yet display distinct temporal dynamics. Extracting TFMs usually require a larger number of samples than acquired in standard fMRI experiments, and thus have therefore previously only been performed at the group level. Here, using an ultra-fast fMRI sequence, MESH-EPI, with a volume repetition time of 158 â€‹ms, we conducted an exploratory study with n â€‹= â€‹6 subjects and computed TFMs at the single subject level on both task and resting-state datasets. We identified 6 common temporal modes of activity in our participants, including a temporal default mode showing patterns of anti-correlation between the default mode and the task-positive networks, a lateralised motor mode and a visual mode integrating the visual cortex and the visual streams. In alignment with other findings reported recently, we also showed that independent time-series are largely free from confound contamination. In particular for ultra-fast fMRI, TFMs can separate the cardiac signal from other fluctuations. Using a non-linear dimensionality reduction technique, UMAP, we obtained preliminary evidence that combinations of spatial networks as described by the TFM model are highly individual. Our results show that it is feasible to measure reproducible TFMs at the single-subject level, opening new possibilities for investigating functional networks and their integration. Finally, we provide a python toolbox for generating TFMs and comment on possible applications of the technique and avenues for further investigation.


Subject(s)
Brain Mapping/methods , Brain/physiology , Image Processing, Computer-Assisted/methods , Adult , Female , Humans , Magnetic Resonance Imaging/methods , Male , Neural Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...