Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Environ Sci Technol ; 58(13): 5631-5645, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38516811

ABSTRACT

Seawater reverse osmosis (SWRO) desalination facilities produce freshwater and, at the same time, discharge hypersaline brine that often includes various chemical additives such as antiscalants and coagulants. This dense brine can sink to the sea bottom and creep over the seabed, reaching up to 5 km from the discharge point. Previous reviews have discussed the effects of SWRO desalination brine on various marine ecosystems, yet little attention has been paid to the impacts on benthic habitats. This review comprehensibly discusses the effects of SWRO brine discharge on marine benthic fauna and flora. We review previous studies that indicated a suite of impacts by SWRO brine on benthic organisms, including bacteria, seagrasses, polychaetes, and corals. The effects within the discharge mixing zones range from impaired activities and morphological deformations to changes in the community composition. Recent modeling work demonstrated that brine could spread over the seabed, beyond the mixing zone, for up to several tens of kilometers and impair nutrient fluxes from the sediment to the water column. We also provide a possible perspective on brine's impact on the biogeochemical process within the mixing zone subsurface. Desalination brine can infiltrate into the sandy bottom around the discharge area due to gravity currents. Accumulation of brine and associated chemical additives, such as polyphosphonate-based antiscalants and ferric-based coagulants in the porewater, may change the redox zones and, hence, impact biogeochemical processes in sediments. With the demand for drinking water escalating worldwide, the volumes of brine discharge are predicted to triple during the current century. Future efforts should focus on the development and operation of viable technologies to minimize the volumes of brine discharged into marine environments, along with a change to environmentally friendly additives. However, the application of these technologies should be partly subsidized by governmental stakeholders to safeguard coastal ecosystems around desalination facilities.


Subject(s)
Ecosystem , Salts , Water Purification , Salinity , Seawater/chemistry
2.
Water Res ; 229: 119411, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36463678

ABSTRACT

Many coral reefs are found in arid and semi-arid regions that often face severe water scarcity and depend on seawater desalination for freshwater supply. Alongside freshwater production, desalination plants discharge brine waste into the sea. Brine includes various chemicals (e.g., antiscalants) that may harm the coastal environment. Although widely used, little is known about the ecotoxicological effects of antiscalants (AS) on hard corals. This study compared the impacts of polyphosphonate-based and polymer-based ASs on the coral Montipora capricornis. After two weeks of exposure, we determined the effects of AS on coral physiology, symbiotic microalgae, and associated bacteria, using various analytical approaches such as optical coherence tomography, pulse amplitude modulated fluorometry, and oxidative stress biomarkers. Both ASs reduced polyp activity (∼25%) and caused tissue damage (30% and 41% for polymer and polyphosphonate based AS, respectively). In addition, exposure to polyphosphonate-based AS decreased the abundance of endosymbiotic algae (39%) and upregulated the antioxidant capacity of the animal host (45%). The microalgal symbionts were under oxidative stress, with increased levels of antioxidant capacity and oxidative damage (a 2-fold increase compared to the control). Interestingly, exposure to AS enhanced the numbers of associated bacteria (∼40% compared to the control seawater) regardless of the AS type. Our results introduce new insights into the effects of brine on the physiology of hard corals, highlighting that choosing AS type must be examined according to the receiving ecosystem.


Subject(s)
Anthozoa , Animals , Anthozoa/physiology , Antioxidants , Bacteria , Coral Reefs , Ecosystem
3.
Environ Pollut ; 305: 119245, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35381303

ABSTRACT

The disruption of the Fundão dam released 43 million m3 of mine tailings into the Doce River until it flowed into the ocean through the estuary. The mine tailing changed the composition of metals in water and sediment, creating a challenging scenario for the local biota. We used multivariate analyzes and the integrated biomarker response index (IBR) to assess the impact of mine tailings on the bioaccumulation profile (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) as well as the biomarkers response in gills, hepatopancreas and muscle of shrimps sampled from different sectors during two dry seasons (dry1 and dry2) (Sep/Oct 2018; 2019) and two wet seasons (wet1 and wet2) (Jan/feb 2019; 2020). There was seasonal and local effect under bioaccumulation and biomarker response revealing that the pattern responses seen in each sector sampled changed according to the season. The greater IBR added to the strong association among the most metals tissue content (Cd, Cr, Cu and Mn) and sectors sampled during dry 1 suggests greater bioavailability of these metals to the environment in this period. Estuarine sectors stand out for high Fe bioavailability, especially during wet1, which seems to be associated with greater metallothionein content in hepatopancreas of shrimps. Native species of marine shrimps proved to be successful indicators of sediment quality besides being sensitive to water contamination by metals. The multi-biomarkers approach added to multivariate analysis supports the temporal and seasonal effects, signalizing the importance of continuous monitoring of the estuarine region to better know about the bioavailability of these metals, mainly Fe, and their long-term effects on the local biota.


Subject(s)
Disasters , Metals, Heavy , Water Pollutants, Chemical , Animals , Biomarkers , Brazil , Cadmium , Environmental Monitoring , Metals , Metals, Heavy/analysis , Rivers , Water , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 832: 154878, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35364171

ABSTRACT

This study investigates the ecotoxicological impacts of the Fundão dam rupture, one of the major environmental disaster that occurred in Brazil and in the world mining industry history, through multi-biomarkers responses and metals bioaccumulation in the fish community of different trophic levels. Specimens of the fishes (omnivorous/herbivorous and carnivorous) were collected along the Doce River channel and its affluent Guandú River, and in different lakes and coastal lagoons adjacent to the river channel, in the Espirito Santo State, Southeast of Brazil. Four sampling collections were carried out over two years (2018 to 2020, during dry and rainy seasons). For both trophic groups the biomarkers responses indicated physiological alterations related to metals exposure and showed strong seasonal variations. The principal component analysis and integrated biomarker response index showed that DNA damage and lipid peroxidation were more associated with dry season 2 (Sep/Oct 2019) and the oxidative damage in proteins, metallothioneins concentration and the activity of superoxide dismutase in the gills showed a greater association with rainy season 2 (Jan/Feb 2020). On the other hand, the enzymes of energy metabolism, catalase and histological damage in the liver and the gills, were more associated with the dry and rainy campaigns of the first year of monitoring. The multivariate approach also suggested a temporal intensification in the bioaccumulation of metals and biological effects in the lacustrine environments. Thus, these results demonstrate that the release of mineral residues from the rupture of the Fundão mine dam affects the health status of the fish from the Doce River basin, provoking metals bioaccumulation, hepatic and branchial damage in the fish besides inducing of enzyme activity related to metal contamination, even four years after the rupture.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Animals , Bioaccumulation , Biomarkers , Brazil , Fishes , Metals/analysis , Metals/toxicity , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
5.
Mar Pollut Bull ; 177: 113511, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35303634

ABSTRACT

This study evaluated the impacts of the mining tailings after the rupture of the Fundão dam on fish communities on the Atlantic Ocean southeast coast. Four sample collections were carried out over two years (2018-2020), in seasonal periods. Omnivorous/herbivorous and carnivorous fish were collected for analysis of metal bioaccumulation, multibiomarkers of environmental contamination and histopathology. Metal bioaccumulation was stronger correlated in carnivorous fish in the dry-2018 collection, besides higher activity of antioxidant enzymes, energy metabolism and higher morphological damage; however, there was less oxidative damage and less metallothioneins induction, and these variables were strongly associated with the wet-2020 collection. In a temporal view, it was possible to observe a reduction in metal levels in fish, except in the mouth of the Doce River. These events can be explained by seasonal natural events, which tend the resuspension and boost metal levels, mainly in the mouth region during the rainy season.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Animals , Bioaccumulation , Brazil , Fishes/metabolism , Water Pollutants, Chemical/analysis
6.
Int Urogynecol J ; 33(6): 1591-1599, 2022 06.
Article in English | MEDLINE | ID: mdl-35066656

ABSTRACT

INTRODUCTION AND HYPOTHESIS: The female pelvic floor muscles (PFM) play an important role in sexual function. We hypothesize that there is a relation between PFM strength and sexual function in women with and without sexual dysfunction. METHODS: Retrospective multicentric cross-sectional study including women with and without sexual dysfunction [Female Sexual Function Index (FSFI) cutoff point < 26.55], analyzed by age range, considering demographic, clinical, anthropometric and PFM strength [Modified Oxford Scale (MOS)] data. Chi-square, Mann-Whitney test and linear regression (ranks) were used, with 5% significance (SAS 9.4). RESULTS: Out of 1013 medical records, 982 women with an average age of 45.76 (± 15.25) were included in the study. Of these, 679 (69.14%) presented FSFI score < 26.55, while 303 (30.86%) presented FSFI ≥ 26.55. It was identified that the higher scores were among white women, < 45 years old, single, with higher education, family income > 4 minimum wages, body mass index < 25 kg/m2, lower parity, regular physical activity practitioner and higher PFM strength (MOS: 4-5). Desire, arousal, lubrication and orgasm domains were higher among women with MOS 4-5, while satisfaction and pain domains were higher among those with MOS 3-5. CONCLUSION: Demographic, clinical and anthropometric conditions can influence both PFM strength and female sexual function. Our findings demonstrate that women with higher PFM strength present fewer complaints about sexual dysfunction.


Subject(s)
Pelvic Floor , Sexual Dysfunction, Physiological , Cross-Sectional Studies , Female , Humans , Middle Aged , Muscle Strength/physiology , Pregnancy , Retrospective Studies , Sexual Dysfunction, Physiological/etiology
7.
Sci Total Environ ; 806(Pt 3): 150727, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34610403

ABSTRACT

The rupture of the Fundão dam (Mariana, MG, southeast Brazil) released a huge flood of mine tailings to Doce river basin and its adjacent coastal area, in November 2015. This catastrophic event exposed aquatic communities to metal contamination related to mine tailings, but its biological effects are still poorly understood. This study investigates how biochemical response related to metal exposure vary between locations and seasons during the years of 2018-2020, in planktonic communities (micro and mesoplankton). Marine microplankton collected in sectors in front and south of the Doce river mouth presented the highest lipid peroxidation (LPO) and induction of metallothioneins (MT). Mesoplankton collected in sectors in front and north of the Doce river mouth presented highest LPO, while MT in this size class did not respond to a clear spatial pattern. Our results showed that metals affected biomarkers in a non-linear pattern and highlighted the complex relationship between metals, biochemical parameters, and seasonality. The variation in biochemical biomarkers indicates physiological stress related to metals, once sectors contaminated by metals, especially Fe, Mn and Cd, presented stronger biochemical responses. Comparison of metal levels with bioaccumulation data collected before the impact indicates Fe, Cd, Cr and Cu more than 2-fold higher after disaster in sectors closer to the river. Literature showed that these sectors present zooplanktonic assemblages with lower biomass and biodiversity, suggesting that the opportunistic species that thrives in the area are also under biochemical stress, but possibly relies on repair or defense mechanisms. The physiological stress detected by this study is possibly related to the mine tailings, considering the metals that stood out and the proximity with the Doce river mouth. This suggests that the impacts related to the failure of Fundão dam are still affecting the marine planktonic community even three to four years after the environmental disaster.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Bioaccumulation , Brazil , Plankton , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
8.
Chemosphere ; 290: 133216, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34896171

ABSTRACT

We evaluated the influence of metal accumulation on the oxidative status [lipid peroxidation (LPO) and total antioxidant capacity (TAC)] and carbonic anhydrase (CA) activity in host and symbionts of the coral Mussismilia harttii and the hydrocoral Millepora alcicornis collected in Abrolhos Reef Banks (Northeast Brazil), potentially impacted by a major mine dam rupture. Considering metal levels measured in reefs worldwide, Abrolhos corals had higher Fe and Mn levels than expected for preserved offshore reefs. Increasing concentrations of arsenic (As), chromium (Cr) and manganese (Mn) drove inhibition of CA and increased oxidative damage in the hydrocoral M. alcicornis. The impairment of enzymatic activity in the symbiotic algae of M. alcicornis may be related to the oxidative stress condition. The hydrocoral M. alcicornis was more affected by metals than the coral M. harttii, which did not show the expected CA inhibition after metal exposure. Our results suggest that CA activity can be applied as a complementary biomarker to evaluate the physiological impacts of environmental metal contamination in reefs. Also, the metal levels and biochemical biomarkers reported in the present study may provide reference data to monitor the health of reefs impacted by a relevant dam rupture.


Subject(s)
Anthozoa , Carbonic Anhydrases , Animals , Atlantic Ocean , Coral Reefs , Metals/toxicity , Oxidative Stress
9.
Mar Pollut Bull ; 169: 112582, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34119962

ABSTRACT

The Great Barrier Reef (GBR) is threatened by climate change and local pressures, including contaminants in nearshore habitats. This study investigated the combined effects of a GBR-relevant contaminant, the herbicide diuron, under current and two future climate scenarios on the coral Acropora millepora. All physiological responses tested (effective quantum yield (ΔF/Fm'), photosynthesis, calcification rate) were negatively affected with increasing concentrations of diuron. Interactive effects between diuron and climate were observed for all responses; however, climate had no significant effect on ΔF/Fm' or calcification rates. Photosynthesis was negatively affected as the climate scenarios were adjusted from ambient (28.1 °C, pCO2 = 397 ppm) to RCP8.5 2050 (29.1 °C, pCO2 = 680 ppm) and 2100 (30.2 °C, pCO2 = 858 ppm) with EC50 values declining from 19.4 to 10.6 and 2.6 µg L-1 diuron in turn. These results highlight the likelihood that water quality guideline values may need to be adjusted as the climate changes.


Subject(s)
Anthozoa , Herbicides , Animals , Climate Change , Coral Reefs , Diuron/toxicity , Herbicides/toxicity
10.
Front Physiol ; 12: 804678, 2021.
Article in English | MEDLINE | ID: mdl-35002777

ABSTRACT

The frequency and severity of coral bleaching events have increased in recent years. Global warming and contamination are primarily responsible for triggering these responses in corals. Thus, the objective of this study was to evaluate the isolated and combined effects of elevated temperature and exposure to copper (Cu) on responses of the antioxidant defense system of coral Mussismilia harttii. In a marine mesocosm, fragments of the coral were exposed to three temperatures (25.0, 26.6, and 27.3°C) and three concentrations of Cu (2.9, 5.4, and 8.6 µg/L) for up to 12 days. Levels of reduced glutathione (GSH) and the activity of enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutamate cysteine ligase (GCL), were evaluated on the corals and symbionts. The short exposure to isolated and combined stressors caused a reduction in GSH levels and inhibition of the activity of antioxidant enzymes. After prolonged exposure, the combination of stressors continued to reduce GSH levels and SOD, CAT, and GCL activity in symbionts and GST activity in host corals. GCL activity was the parameter most affected by stressors, remaining inhibited after 12-days exposure. Interesting that long-term exposure to stressors stimulated antioxidant defense proteins in M. harttii, demonstrating a counteracting response that may beneficiate the oxidative state. These results, combined with other studies already published suggest that the antioxidant system should be further studied in order to understand the mechanisms of tolerance of South Atlantic reefs.

12.
Environ Pollut ; 268(Pt B): 115892, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33120157

ABSTRACT

Global warming and local disturbances such as pollution cause several impacts on coral reefs. Among them is the breakdown of the symbiosis between host corals and photosynthetic symbionts, which is often a consequence of oxidative stress. Therefore, we investigated if the combined effects of thermal stress and copper (Cu) exposure change the trophic behavior and oxidative status of the reef-building coral Mussismilia harttii. Coral fragments were exposed in a mesocosm system to three temperatures (25.0, 26.6 and 27.3 °C) and three Cu concentrations (2.9, 5.4 and 8.6 µg L-1). Samples were collected after 4 and 12 days of exposure. We then (i) performed fatty acid analysis by gas chromatography-mass spectrometry to quantify changes in stearidonic acid and docosapentaenoic acid (autotrophy markers) and cis-gondoic acid (heterotrophy marker), and (ii) assessed the oxidative status of both host and symbiont through analyses of lipid peroxidation (LPO) and total antioxidant capacity (TAC). Our findings show that trophic behavior was predominantly autotrophic and remained unchanged under individual and combined stressors for both 4- and 12-day experiments; for the latter, however, there was an increase in the heterotrophy marker. Results also show that 4 days was not enough to trigger changes in LPO or TAC for both coral and symbiont. However, the 12-day experiment showed a reduction in symbiont LPO associated with thermal stress alone, and the combination of stressors increased their TAC. For the coral, the isolated effects of increase in Cu and temperature led to an increase in LPO. The effects of combined stressors on trophic behavior and oxidative status were not much different than those from the isolated effects of each stressor. These findings highlight that host and symbionts respond differently to stress and are relevant as they show the physiological response of individual holobiont compartments to both global and local stressors.


Subject(s)
Anthozoa , Animals , Copper/toxicity , Coral Reefs , Oxidation-Reduction , Oxidative Stress , Symbiosis
13.
Sci Total Environ ; 739: 140308, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32846507

ABSTRACT

Tropical marine habitat-builders such as calcifying green algae can be susceptible to climate change (warming and acidification). This study evaluated the cumulative effects of ocean warming (OW), ocean acidification (OA) and the herbicide diuron on the calcifying green algae Halimeda opuntia. We also assessed the influence of acclimation history to experimental climate change conditions on physiological responses. H. opuntia were exposed for 15 days to orthogonal combinations of three climate scenarios [ambient (28 °C, pCO2 = 378 ppm), 2050 (29 °C, pCO2 = 567 ppm) and 2100 (30 °C, pCO2 = 721 ppm)] and to six diuron concentrations (up to 29 µg L-1). Half of the H. opuntia had been acclimated for eight months to the climate scenarios in a mesocosm approach, while the remaining half were not pre-acclimated, as is current practice in most experiments. Climate effects on quantum yield (ΔF/Fm'), photosynthesis and calcification in future climate scenarios were significantly stronger (by -24, -46 and +26%, respectively) in non-acclimated algae, suggesting experimental bias may exaggerate effects in organisms not appropriately acclimated to future-climate conditions. Thus, full analysis was done on acclimated plants only. Interactive effects of future climate scenarios and diuron were observed for ΔF/Fm', while the detrimental effects of climate and diuron on net photosynthesis and total antioxidant capacity (TAC) were additive. Calcification-related enzymes were negatively affected only by diuron, with inhibition of Ca-ATPase and upregulation of carbonic anhydrase. The combined and consistent physiological and biochemical evidence of negative impacts (across six indicators) of both herbicide and future-climate conditions on the health of H. opuntia highlights the need to address both climate change and water quality. Guideline values for contaminants may also need to be lowered considering 'climate adjusted thresholds'. Importantly, this study highlights the value of applying substantial future climate acclimation periods in experimental studies to avoid exaggerated organism responses to OW and OA.


Subject(s)
Chlorophyta , Herbicides , Acclimatization , Carbon Dioxide , Climate Change , Coral Reefs , Hydrogen-Ion Concentration , Seawater
14.
Environ Pollut ; 257: 113572, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31753625

ABSTRACT

Multiple global and local stressors threat coral reefs worldwide, and symbiont-bearing foraminifera are bioindicators of reef health. The aim of this study was to investigate single and combined effects of copper (Cu) and climate change related stressors (ocean acidification and warming) on a symbiont-bearing foraminifer by means of an integrated biomarker analysis. Using a mesocosm approach, Amphistegina gibbosa were exposed for 25 days to acidification, warming and/or Cu contamination on a full orthogonal design (two levels each factor). Cu was the main factor increasing bleaching and respiration rates. Warming was the main cause of mortality and reduced growth. Calcification related enzymes were inhibited in response to Cu exposure and, in general, the inhibition was stronger under climate change. Multiple biological endpoints responded to realistic exposure scenarios in different ways, but evidenced general stress posed by climate change combined with Cu. These biological responses drove the high values found for the 'stress index' IBR (Integrated Biomarker Response) - indicating general organismal health impairment under the multiple stressor scenario. Our results provide insights for coral reef management by detecting potential monitoring tools. The ecotoxicological responses indicated that Cu reduces the tolerance of foraminifera to climate change (acidification + warming). Once the endpoints analysed have a high ecological relevance, and that responses were evaluated on a classical reef bioindicator species, these results highlight the high risk of climate change and metal pollution co-exposure to coral reefs. Integrated responses allowed a better effects comprehension and are pointed as a promising tool to monitor pollution effects on a changing ocean.


Subject(s)
Anthozoa/physiology , Climate Change , Copper/adverse effects , Coral Reefs , Seawater/chemistry , Animals , Biomarkers , Hydrogen-Ion Concentration
15.
Chemosphere ; 236: 124420, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31545208

ABSTRACT

The combined effects of exposure to increasing temperature and copper (Cu) concentrations were evaluated in the zooxanthellate scleractinian coral Mussismilia harttii. Endpoints analyzed included activity of enzymes involved in glycolysis (pyruvate kinase, PK; lactate dehydrogenase, LDH), Krebs cycle (citrate synthase, CS; isocitrate dehydrogenase; IDH), electron transport chain (electron transport system, ETS) and pentose phosphate pathway (glucose-6-phosphate dehydrogenase, G6PDH). Coral polyps were kept under control conditions (25.0 ±â€¯0.1 °C; 2.9 ±â€¯0.7 µg/L Cu) or exposed to combined treatments of increasing temperature (26.6 ±â€¯0.1 °C and 27.3 ±â€¯0.1 °C) and concentrations of dissolved Cu (5.4 ±â€¯0.9 and 8.6 ±â€¯0.3 µg/L) for 4 and 12 days using a mesocosm system. PK activity was not affected by stressors. LDH, CS, IDH, ETS and G6PDH activities were temporally inhibited by stressors alone. CS, ETS and G6PDH activities remained inhibited by the combination of stressors after 12 days. Furthermore, all combinations between increasing temperature and exposure Cu were synergistic after prolonged exposure. Taken together, stressors applied alone led to temporary inhibitory effects on energy metabolism enzymes of the coral M. harttii, however, prolonged exposure reveals strong deleterious effects over the metabolism of corals due to the combination of stressors. The present study is the first one to give insights into the combined effects of increasing temperature and Cu exposure in the energy metabolism enzymes of a scleractinian coral. Findings suggest that moderate Cu contamination in future increasing temperature scenarios can be worrying for aerobic and oxidative metabolism of M. harttii.


Subject(s)
Anthozoa/enzymology , Copper/pharmacology , Energy Metabolism , Temperature , Animals , Anthozoa/drug effects , Citric Acid Cycle , Glycolysis , L-Lactate Dehydrogenase/metabolism , Pentose Phosphate Pathway , Water Pollutants, Chemical/pharmacology
16.
Int J Mol Sci ; 20(12)2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31242558

ABSTRACT

The emission of greenhouse gases has grown in unprecedented levels since the beginning of the industrial era. As a result, global climate changes, such as heightened global temperature and ocean acidification, are expected to negatively impact populations. Similarly, industrial and urban unsustainable development are also expected to impose local impacts of their own, such as environmental pollution with organic and inorganic chemicals. As an answer, biomarkers can be used in environmental programs to assess these impacts. These tools are based in the quantification of biochemical and cellular responses of target species that are known to respond in a sensitive and specific way to such stresses. In this context, carbonic anhydrase has shown to be a promising biomarker candidate for the assessment of global and local impacts in biomonitoring programs, especially in marine zones, such as coral reefs, considering the pivotal role of this enzyme in the calcification process. Therefore, the aim of this review is to show the recent advances in the carbonic anhydrase research and the reasons why it can be considered as a promising biomarker to be used for calcifying organisms.


Subject(s)
Calcification, Physiologic , Carbonic Anhydrases/metabolism , Animals , Anthozoa/physiology , Biomarkers , Hydrogen-Ion Concentration , Models, Biological , Temperature
17.
Chemosphere ; 227: 598-605, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31009866

ABSTRACT

Coral reefs are subjected to climate change and are severely impacted by human activities, with copper (Cu) being a relevant physiological stressor for corals at local scale. The ecological relevance of parameters measured at biochemical or cellular level is now considered an extremely important feature in environmental studies, and can be used as early warning signs of environmental degradation. In this context, the effects of acute exposure (96 h) to Cu were assessed on the maximum photochemical efficiency of zooxanthellae (Fv/Fm) and on the activity of key enzymes [carbonic anhydrase (CA) and Ca-ATPase] involved in coral physiology using the scleractinian coral Mussismilia harttii as a biological model. Corals were exposed to different concentrations of dissolved Cu (4.6-19.4 µg/L) using two different experimental approaches: a laboratory closed system and a marine mesocosm system. Fv/Fm values and Ca - ATPase activity were not affect by exposure to Cu in any of the exposure systems. However, a significant reduction in CA activity was observed in corals exposed to 11.9 and 19.4 µg Cu/L in the laboratory and at all concentrations of Cu tested in the mesocosm system (4.6, 6.0 and 8.5 µg/L). Based on the sensitivity of this enzyme to the short period of exposure to sublethal concentrations of Cu in both experimental approaches, the present study suggests the use of CA activity as a potential biomarker to be used in biomarker-based environmental monitoring programs in coral reefs.


Subject(s)
Anthozoa/drug effects , Carbonic Anhydrases/metabolism , Copper/toxicity , Coral Reefs , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Animals , Anthozoa/enzymology , Atlantic Ocean , Biomarkers/metabolism , Brazil , Humans , Photosynthesis/drug effects , Stress, Physiological/drug effects
18.
J Cosmet Laser Ther ; 21(5): 278-285, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30300017

ABSTRACT

OBJECTIVE: Evaluate the effects of the whole body vibration in improving of cellulite in the women's gluteal region. METHODS: Controlled clinical trial performed with 42 women, with cellulite in the gluteal region, detected by means of clinical examination. After evaluation, the women were divided into two groups: Whole-Body Vibration (WBV_G) and control (C_G). The evaluations were performed at the beginning and the end of 10 sessions and superficial skin temperature, perimetry in the gluteal region, analysis of body contouring, analysis of improvement by blind reviewers and instrument of satisfaction, by numeric scale were investigated. RESULTS: In the thermographic analysis, the WBV_G obtained significant increase of superficial skin temperature on the right (p = 0.02) and left (p = 0.02) gluteal region. There was no difference in intra- and intergroups in perimetry and the analysis of body contour. The WBV_G obtained a higher percentage of improvement by assessment of the blind reviewers (p = 0.003) and greater aesthetics satisfaction (p = 0.006), when compared to C_G. CONCLUSION: WBV provided an improvement in the aspect of the cellulite when assessed by blind reviewers and greater participants' satisfaction, providing a significant increase in the superficial skin temperature in the gluteal region.


Subject(s)
Body Contouring/methods , Cellulite/therapy , Vibration/therapeutic use , Adult , Buttocks , Female , Humans
19.
Aquat Toxicol ; 206: 123-133, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30472481

ABSTRACT

Coral reefs are threatened by global and local impacts, such as ocean acidification (OA) and metal contamination. Toxicity of metals, such as copper (Cu), is expected to be enhanced with OA. However, the interaction between these environmental stressors is still poorly evaluated. In the present study, the interactive effects of seawater acidification and increasing Cu concentrations were evaluated in a zooxanthellate scleractinian coral (Mussismilia harttii), using biochemical biomarkers involved in the coral calcification process and the photosynthetic metabolism of endosymbionts. Corals were kept under control conditions (no seawater acidification and no Cu addition in seawater) or exposed to combined treatments of reduced seawater pH (8.1, 7.8, 7.5 and 7.2) and environmentally relevant concentrations of dissolved Cu (measured: 1.0, 1.6, 2.3 and 3.2 µg/L) in a mesocosm system. After 15- and 35-days exposure, corals were analyzed for photochemical efficiency (Fv/Fm), chlorophyll a content, Ca-ATPase and carbonic anhydrase (CA) activity. Results showed that 76% of the interactions between reduced seawater pH and increasing Cu concentrations were antagonistic. Only 24% of these interactions were additive or synergistic. In general, the combination of stressors had no significant deleterious effects in the photosynthetic metabolism of endosymbionts or Ca-ATPase activity. In fact, the lowest dissolved Cu concentration tested had a consistent positive effect on Ca-ATPase activity in corals facing any of the reduced seawater pH conditions tested. In turn, potentially deleterious effects on acid-base balance in M. harttii, associated with changes in CA activity, were intensified by the combination of stressors. Findings reported here indicate that Cu toxicity in future OA scenarios can be less severe than previously suggested in this coral holobiont.


Subject(s)
Anthozoa/drug effects , Biomarkers/metabolism , Copper/toxicity , Seawater/chemistry , Animals , Chlorophyll A/analysis , Hydrogen-Ion Concentration , Photosynthesis/drug effects , Water Pollutants, Chemical/toxicity
20.
Sci Total Environ ; 651(Pt 1): 261-270, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30236843

ABSTRACT

Climate change, pollution and increased runoff are some of the main drivers of coral reefs degradation worldwide. However, the occurrence of runoff and marine pollution, as well as its ecological effects in South Atlantic coral reefs are still poorly understood. The aim of the present work is to characterize the terrigenous influence and contamination impact on the environmental health of five reefs located along a gradient of distance from a river source, using geochemical, water quality, and ecological indicators. Stable isotopes and sterols were used as geochemical indicators of sewage and terrigenous organic matter. Dissolved metal concentrations (Cu, Zn, Cd, and Pb) were used as indicators of water quality. Population density, bleaching and chlorophyll α content of the symbiont-bearing foraminifer Amphistegina gibbosa, were used as indicators of ecological effects. Sampling was performed four times during the year to assess temporal variability. Sediment and water quality indicators showed that reefs close to the river discharge experience nutrient enrichment and sewage contamination, and metals concentrations above international environmental quality guidelines. Higher levels of contamination were strongly related to the higher frequency of bleaching and lower density in A. gibbosa populations. The integrated evaluation of stable isotopes, sterols and metals provided a consistent diagnostic about sewage influence on the studied reefs. Additionally, the observed bioindicator responses evidenced relevant ecological effects. The water quality, geochemical and ecological indicators employed in the present study were effective as biomonitoring tools to be applied in reefs worldwide.


Subject(s)
Coral Reefs , Foraminifera/physiology , Metals/adverse effects , Steroids/adverse effects , Water Pollutants, Chemical/adverse effects , Water Quality , Brazil , Environmental Monitoring , Geography , Population Density , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...