Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 832: 154878, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35364171

ABSTRACT

This study investigates the ecotoxicological impacts of the Fundão dam rupture, one of the major environmental disaster that occurred in Brazil and in the world mining industry history, through multi-biomarkers responses and metals bioaccumulation in the fish community of different trophic levels. Specimens of the fishes (omnivorous/herbivorous and carnivorous) were collected along the Doce River channel and its affluent Guandú River, and in different lakes and coastal lagoons adjacent to the river channel, in the Espirito Santo State, Southeast of Brazil. Four sampling collections were carried out over two years (2018 to 2020, during dry and rainy seasons). For both trophic groups the biomarkers responses indicated physiological alterations related to metals exposure and showed strong seasonal variations. The principal component analysis and integrated biomarker response index showed that DNA damage and lipid peroxidation were more associated with dry season 2 (Sep/Oct 2019) and the oxidative damage in proteins, metallothioneins concentration and the activity of superoxide dismutase in the gills showed a greater association with rainy season 2 (Jan/Feb 2020). On the other hand, the enzymes of energy metabolism, catalase and histological damage in the liver and the gills, were more associated with the dry and rainy campaigns of the first year of monitoring. The multivariate approach also suggested a temporal intensification in the bioaccumulation of metals and biological effects in the lacustrine environments. Thus, these results demonstrate that the release of mineral residues from the rupture of the Fundão mine dam affects the health status of the fish from the Doce River basin, provoking metals bioaccumulation, hepatic and branchial damage in the fish besides inducing of enzyme activity related to metal contamination, even four years after the rupture.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Animals , Bioaccumulation , Biomarkers , Brazil , Fishes , Metals/analysis , Metals/toxicity , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Mar Pollut Bull ; 177: 113511, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35303634

ABSTRACT

This study evaluated the impacts of the mining tailings after the rupture of the Fundão dam on fish communities on the Atlantic Ocean southeast coast. Four sample collections were carried out over two years (2018-2020), in seasonal periods. Omnivorous/herbivorous and carnivorous fish were collected for analysis of metal bioaccumulation, multibiomarkers of environmental contamination and histopathology. Metal bioaccumulation was stronger correlated in carnivorous fish in the dry-2018 collection, besides higher activity of antioxidant enzymes, energy metabolism and higher morphological damage; however, there was less oxidative damage and less metallothioneins induction, and these variables were strongly associated with the wet-2020 collection. In a temporal view, it was possible to observe a reduction in metal levels in fish, except in the mouth of the Doce River. These events can be explained by seasonal natural events, which tend the resuspension and boost metal levels, mainly in the mouth region during the rainy season.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Animals , Bioaccumulation , Brazil , Fishes/metabolism , Water Pollutants, Chemical/analysis
3.
Chemosphere ; 290: 133216, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34896171

ABSTRACT

We evaluated the influence of metal accumulation on the oxidative status [lipid peroxidation (LPO) and total antioxidant capacity (TAC)] and carbonic anhydrase (CA) activity in host and symbionts of the coral Mussismilia harttii and the hydrocoral Millepora alcicornis collected in Abrolhos Reef Banks (Northeast Brazil), potentially impacted by a major mine dam rupture. Considering metal levels measured in reefs worldwide, Abrolhos corals had higher Fe and Mn levels than expected for preserved offshore reefs. Increasing concentrations of arsenic (As), chromium (Cr) and manganese (Mn) drove inhibition of CA and increased oxidative damage in the hydrocoral M. alcicornis. The impairment of enzymatic activity in the symbiotic algae of M. alcicornis may be related to the oxidative stress condition. The hydrocoral M. alcicornis was more affected by metals than the coral M. harttii, which did not show the expected CA inhibition after metal exposure. Our results suggest that CA activity can be applied as a complementary biomarker to evaluate the physiological impacts of environmental metal contamination in reefs. Also, the metal levels and biochemical biomarkers reported in the present study may provide reference data to monitor the health of reefs impacted by a relevant dam rupture.


Subject(s)
Anthozoa , Carbonic Anhydrases , Animals , Atlantic Ocean , Coral Reefs , Metals/toxicity , Oxidative Stress
4.
Front Physiol ; 12: 804678, 2021.
Article in English | MEDLINE | ID: mdl-35002777

ABSTRACT

The frequency and severity of coral bleaching events have increased in recent years. Global warming and contamination are primarily responsible for triggering these responses in corals. Thus, the objective of this study was to evaluate the isolated and combined effects of elevated temperature and exposure to copper (Cu) on responses of the antioxidant defense system of coral Mussismilia harttii. In a marine mesocosm, fragments of the coral were exposed to three temperatures (25.0, 26.6, and 27.3°C) and three concentrations of Cu (2.9, 5.4, and 8.6 µg/L) for up to 12 days. Levels of reduced glutathione (GSH) and the activity of enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutamate cysteine ligase (GCL), were evaluated on the corals and symbionts. The short exposure to isolated and combined stressors caused a reduction in GSH levels and inhibition of the activity of antioxidant enzymes. After prolonged exposure, the combination of stressors continued to reduce GSH levels and SOD, CAT, and GCL activity in symbionts and GST activity in host corals. GCL activity was the parameter most affected by stressors, remaining inhibited after 12-days exposure. Interesting that long-term exposure to stressors stimulated antioxidant defense proteins in M. harttii, demonstrating a counteracting response that may beneficiate the oxidative state. These results, combined with other studies already published suggest that the antioxidant system should be further studied in order to understand the mechanisms of tolerance of South Atlantic reefs.

6.
Environ Pollut ; 268(Pt B): 115892, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33120157

ABSTRACT

Global warming and local disturbances such as pollution cause several impacts on coral reefs. Among them is the breakdown of the symbiosis between host corals and photosynthetic symbionts, which is often a consequence of oxidative stress. Therefore, we investigated if the combined effects of thermal stress and copper (Cu) exposure change the trophic behavior and oxidative status of the reef-building coral Mussismilia harttii. Coral fragments were exposed in a mesocosm system to three temperatures (25.0, 26.6 and 27.3 °C) and three Cu concentrations (2.9, 5.4 and 8.6 µg L-1). Samples were collected after 4 and 12 days of exposure. We then (i) performed fatty acid analysis by gas chromatography-mass spectrometry to quantify changes in stearidonic acid and docosapentaenoic acid (autotrophy markers) and cis-gondoic acid (heterotrophy marker), and (ii) assessed the oxidative status of both host and symbiont through analyses of lipid peroxidation (LPO) and total antioxidant capacity (TAC). Our findings show that trophic behavior was predominantly autotrophic and remained unchanged under individual and combined stressors for both 4- and 12-day experiments; for the latter, however, there was an increase in the heterotrophy marker. Results also show that 4 days was not enough to trigger changes in LPO or TAC for both coral and symbiont. However, the 12-day experiment showed a reduction in symbiont LPO associated with thermal stress alone, and the combination of stressors increased their TAC. For the coral, the isolated effects of increase in Cu and temperature led to an increase in LPO. The effects of combined stressors on trophic behavior and oxidative status were not much different than those from the isolated effects of each stressor. These findings highlight that host and symbionts respond differently to stress and are relevant as they show the physiological response of individual holobiont compartments to both global and local stressors.


Subject(s)
Anthozoa , Animals , Copper/toxicity , Coral Reefs , Oxidation-Reduction , Oxidative Stress , Symbiosis
7.
Chemosphere ; 236: 124420, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31545208

ABSTRACT

The combined effects of exposure to increasing temperature and copper (Cu) concentrations were evaluated in the zooxanthellate scleractinian coral Mussismilia harttii. Endpoints analyzed included activity of enzymes involved in glycolysis (pyruvate kinase, PK; lactate dehydrogenase, LDH), Krebs cycle (citrate synthase, CS; isocitrate dehydrogenase; IDH), electron transport chain (electron transport system, ETS) and pentose phosphate pathway (glucose-6-phosphate dehydrogenase, G6PDH). Coral polyps were kept under control conditions (25.0 ±â€¯0.1 °C; 2.9 ±â€¯0.7 µg/L Cu) or exposed to combined treatments of increasing temperature (26.6 ±â€¯0.1 °C and 27.3 ±â€¯0.1 °C) and concentrations of dissolved Cu (5.4 ±â€¯0.9 and 8.6 ±â€¯0.3 µg/L) for 4 and 12 days using a mesocosm system. PK activity was not affected by stressors. LDH, CS, IDH, ETS and G6PDH activities were temporally inhibited by stressors alone. CS, ETS and G6PDH activities remained inhibited by the combination of stressors after 12 days. Furthermore, all combinations between increasing temperature and exposure Cu were synergistic after prolonged exposure. Taken together, stressors applied alone led to temporary inhibitory effects on energy metabolism enzymes of the coral M. harttii, however, prolonged exposure reveals strong deleterious effects over the metabolism of corals due to the combination of stressors. The present study is the first one to give insights into the combined effects of increasing temperature and Cu exposure in the energy metabolism enzymes of a scleractinian coral. Findings suggest that moderate Cu contamination in future increasing temperature scenarios can be worrying for aerobic and oxidative metabolism of M. harttii.


Subject(s)
Anthozoa/enzymology , Copper/pharmacology , Energy Metabolism , Temperature , Animals , Anthozoa/drug effects , Citric Acid Cycle , Glycolysis , L-Lactate Dehydrogenase/metabolism , Pentose Phosphate Pathway , Water Pollutants, Chemical/pharmacology
8.
Int J Mol Sci ; 20(12)2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31242558

ABSTRACT

The emission of greenhouse gases has grown in unprecedented levels since the beginning of the industrial era. As a result, global climate changes, such as heightened global temperature and ocean acidification, are expected to negatively impact populations. Similarly, industrial and urban unsustainable development are also expected to impose local impacts of their own, such as environmental pollution with organic and inorganic chemicals. As an answer, biomarkers can be used in environmental programs to assess these impacts. These tools are based in the quantification of biochemical and cellular responses of target species that are known to respond in a sensitive and specific way to such stresses. In this context, carbonic anhydrase has shown to be a promising biomarker candidate for the assessment of global and local impacts in biomonitoring programs, especially in marine zones, such as coral reefs, considering the pivotal role of this enzyme in the calcification process. Therefore, the aim of this review is to show the recent advances in the carbonic anhydrase research and the reasons why it can be considered as a promising biomarker to be used for calcifying organisms.


Subject(s)
Calcification, Physiologic , Carbonic Anhydrases/metabolism , Animals , Anthozoa/physiology , Biomarkers , Hydrogen-Ion Concentration , Models, Biological , Temperature
9.
Chemosphere ; 227: 598-605, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31009866

ABSTRACT

Coral reefs are subjected to climate change and are severely impacted by human activities, with copper (Cu) being a relevant physiological stressor for corals at local scale. The ecological relevance of parameters measured at biochemical or cellular level is now considered an extremely important feature in environmental studies, and can be used as early warning signs of environmental degradation. In this context, the effects of acute exposure (96 h) to Cu were assessed on the maximum photochemical efficiency of zooxanthellae (Fv/Fm) and on the activity of key enzymes [carbonic anhydrase (CA) and Ca-ATPase] involved in coral physiology using the scleractinian coral Mussismilia harttii as a biological model. Corals were exposed to different concentrations of dissolved Cu (4.6-19.4 µg/L) using two different experimental approaches: a laboratory closed system and a marine mesocosm system. Fv/Fm values and Ca - ATPase activity were not affect by exposure to Cu in any of the exposure systems. However, a significant reduction in CA activity was observed in corals exposed to 11.9 and 19.4 µg Cu/L in the laboratory and at all concentrations of Cu tested in the mesocosm system (4.6, 6.0 and 8.5 µg/L). Based on the sensitivity of this enzyme to the short period of exposure to sublethal concentrations of Cu in both experimental approaches, the present study suggests the use of CA activity as a potential biomarker to be used in biomarker-based environmental monitoring programs in coral reefs.


Subject(s)
Anthozoa/drug effects , Carbonic Anhydrases/metabolism , Copper/toxicity , Coral Reefs , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Animals , Anthozoa/enzymology , Atlantic Ocean , Biomarkers/metabolism , Brazil , Humans , Photosynthesis/drug effects , Stress, Physiological/drug effects
10.
Aquat Toxicol ; 206: 123-133, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30472481

ABSTRACT

Coral reefs are threatened by global and local impacts, such as ocean acidification (OA) and metal contamination. Toxicity of metals, such as copper (Cu), is expected to be enhanced with OA. However, the interaction between these environmental stressors is still poorly evaluated. In the present study, the interactive effects of seawater acidification and increasing Cu concentrations were evaluated in a zooxanthellate scleractinian coral (Mussismilia harttii), using biochemical biomarkers involved in the coral calcification process and the photosynthetic metabolism of endosymbionts. Corals were kept under control conditions (no seawater acidification and no Cu addition in seawater) or exposed to combined treatments of reduced seawater pH (8.1, 7.8, 7.5 and 7.2) and environmentally relevant concentrations of dissolved Cu (measured: 1.0, 1.6, 2.3 and 3.2 µg/L) in a mesocosm system. After 15- and 35-days exposure, corals were analyzed for photochemical efficiency (Fv/Fm), chlorophyll a content, Ca-ATPase and carbonic anhydrase (CA) activity. Results showed that 76% of the interactions between reduced seawater pH and increasing Cu concentrations were antagonistic. Only 24% of these interactions were additive or synergistic. In general, the combination of stressors had no significant deleterious effects in the photosynthetic metabolism of endosymbionts or Ca-ATPase activity. In fact, the lowest dissolved Cu concentration tested had a consistent positive effect on Ca-ATPase activity in corals facing any of the reduced seawater pH conditions tested. In turn, potentially deleterious effects on acid-base balance in M. harttii, associated with changes in CA activity, were intensified by the combination of stressors. Findings reported here indicate that Cu toxicity in future OA scenarios can be less severe than previously suggested in this coral holobiont.


Subject(s)
Anthozoa/drug effects , Biomarkers/metabolism , Copper/toxicity , Seawater/chemistry , Animals , Chlorophyll A/analysis , Hydrogen-Ion Concentration , Photosynthesis/drug effects , Water Pollutants, Chemical/toxicity
11.
Mar Environ Res ; 130: 248-257, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28823595

ABSTRACT

Seawater contamination with metals, such as copper (Cu), is a notable local impact threatening coral reefs. Cu effects on biomarkers associated with photosynthesis, oxidative status and calcification were evaluated in the Brazilian coral Mussismilia harttii using a marine mesocosm facility. Polyps were kept under control conditions (1.9 µg L-1 Cu) or exposed to dissolved Cu (3.0, 4.8, and 6.7 µg L-1) for 12 days. Photochemical efficiency of the photosystem II of symbiotic algae (zooxanthellae) was measured and polyps were analyzed for antioxidant capacity, lipid peroxidation, DNA damage, and carbonic anhydrase Ca-ATPase, Mg-ATPase and (Ca,Mg)-ATPase activities after 12 days. Results highlighted the effects of Cu exposure, leading corals to an oxidative stress condition [increased total antioxidant capacity (TAC) and DNA damage] and a possible reduced calcification ability [decreased (Ca,Mg)-ATPase activity]. Therefore, biomarkers associated with oxidative status (TAC and DNA damage) and calcification [(Ca, Mg)-ATPase] are indicated as good predictors of corals health.


Subject(s)
Anthozoa , Biomarkers , Copper/toxicity , Photosynthesis , Water Pollutants/toxicity , Animals , Brazil , DNA Damage , Oxidative Stress
12.
Aquat Toxicol ; 190: 121-132, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28709126

ABSTRACT

Effects of increasing temperature alone and in combination with exposure to dissolved copper (Cu) were evaluated in the zooxanthellate scleractinian coral Mussismilia harttii using a marine mesocosm system. Endpoints analyzed included parameters involved in metabolism [maximum photosynthetic capacity of zooxanthellae (Fv/Fm), chlorophyll a and ATP concentrations], calcification [carbonic anhydrase (CA) and Ca2+-Mg2+-ATPase activity], and oxidative status [antioxidant capacity against peroxyl radicals (ACAP) and lipid peroxidation (LPO)]. Coral polyps were collected, acclimated and exposed to three increasing temperature conditions [25.0±0.1°C (control; average temperature of local seawater), 26.6±0.1°C and 27.3±0.1°C] using a marine mesocosm system. They were tested alone and in combination with four environmentally relevant concentrations of dissolved Cu in seawater [2.9±0.7 (control; average concentration in local seawater), 3.8±0.8, 5.4±0.9 and 8.6±0.3µg/L] for 4, 8 and 12days. Fv/Fm reduced over the experimental period with increasing temperature. Combination of increasing temperature with Cu exposure enhanced this effect. CA and Ca2+-Mg2+-ATPase activities increased up to 8days of exposure, but recovered back after 12days of experiment. Short-term exposure to increasing temperature or long-term exposure to the combination of stressors reduced LPO, suggesting the occurrence of a remodeling process in the lipid composition of biological membranes. ACAP, ATP and chlorophyll a were not significantly affected by the stressors. These findings indicate that increasing temperature combined with exposure to dissolved Cu increase susceptibility to bleaching and reduce growth in the zooxanthellate scleractinian coral M. harttii.


Subject(s)
Anthozoa/drug effects , Copper/toxicity , Hot Temperature , Oxidative Stress/drug effects , Photosynthesis/drug effects , Water Pollutants, Chemical/toxicity , Animals , Anthozoa/growth & development , Anthozoa/metabolism , Antioxidants/metabolism , Brazil , Chlorophyll/metabolism , Chlorophyll A , Environmental Monitoring , Seawater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...