Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 203(5): 1298-1312, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31358659

ABSTRACT

Cure of severe infections, sepsis, and septic shock with antimicrobial drugs is a challenge because morbidity and mortality in these conditions are essentially caused by improper immune response. We have tested the hypothesis that repeated reactivation of established memory to pathogens may reset unfavorable immune responses. We have chosen for this purpose a highly stringent mouse model of polymicrobial sepsis by cecum ligation and puncture. Five weeks after priming with a diverse Ag pool, high-grade sepsis was induced in C57BL/6j mice that was lethal in 24 h if left untreated. Antimicrobial drug (imipenem) alone rescued 9.7% of the animals from death, but >5-fold higher cure rate could be achieved by combining imipenem and two rechallenges with the Ag pool (p < 0.0001). Antigenic stimulation fine-tuned the immune response in sepsis by contracting the total CD3+ T cell compartment in the spleen and disengaging the hyperactivation state in the memory T subsets, most notably CD8+ T cells, while preserving the recovery of naive subsets. Quantitative proteomics/lipidomics analyses revealed that the combined treatment reverted the molecular signature of sepsis for cytokine storm, and deregulated inflammatory reaction and proapoptotic environment, as well as the lysophosphatidylcholine/phosphatidylcholine ratio. Our results showed the feasibility of resetting uncontrolled hyperinflammatory reactions into ordered hypoinflammatory responses by memory reactivation, thereby reducing morbidity and mortality in antibiotic-treated sepsis. This beneficial effect was not dependent on the generation of a pathogen-driven immune response itself but rather on the reactivation of memory to a diverse Ag pool that modulates the ongoing response.


Subject(s)
Sepsis/immunology , Animals , Apoptosis/immunology , CD3 Complex/immunology , CD8-Positive T-Lymphocytes/immunology , Cecum/immunology , Cytokines/immunology , Disease Models, Animal , Female , Immunologic Memory/immunology , Inflammation/immunology , Lipidomics/methods , Lysophosphatidylcholines/immunology , Mice , Mice, Inbred C57BL , Phosphatidylcholines/immunology , Proteomics/methods , Shock, Septic/immunology , Spleen/immunology
2.
Reproduction ; 154(6): 881-893, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28971896

ABSTRACT

The influence of in vitro maturation (IVM) in oocytes is still not totally understood. The aim of this study was to determine the influence of IVM on the metabolism and homeostasis of bovine cumulus-oocyte complexes. In the present study, we demonstrated that IVM leads to accumulation of neutral lipids associated with differential levels of the mono-, di- and triacylglycerols in both cumulus cells and oocytes. We observed that in vitro-matured oocytes exhibited decreased glutathione and reactive oxygen species levels and a lower ATP/ADP ratio when compared to in vivo-matured oocytes, with no significant differences in metabolism and stress-related mRNA or miRNA levels. Moreover, in addition to an increase in lipids in in vitro-matured cumulus cells, fatty acid synthesis and accumulation as well as glycolysis pathway genes were upregulated, whereas those affiliated with the ß-oxidation pathway were decreased. Our gene expression data in cumulus cells suggest the disruption of endoplasmic reticulum stress, apoptosis and cellular stress response pathways during IVM. Furthermore, a total of 19 miRNAs were significantly altered by the maturation process in cumulus cells. These results indicate some new negative influences of the in vitro system in cumulus-oocyte complexes, demonstrating the occurrence of functional disruption in lipid metabolism and stress pathways and showing evidences suggesting the occurrence of altered mitochondrial activity and energy metabolism during IVM, with a massive dysregulation of the corresponding transcripts in the surrounding cumulus cells.


Subject(s)
Cumulus Cells/metabolism , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/metabolism , Oxidative Stress , Animals , Cattle , Cells, Cultured , Cumulus Cells/cytology , Energy Metabolism , Female , Oocytes/cytology , Oxidation-Reduction , Reactive Oxygen Species/metabolism
3.
Springerplus ; 5: 172, 2016.
Article in English | MEDLINE | ID: mdl-27026869

ABSTRACT

Detection and quantification of lysine degradation metabolites in plasma is necessary for the diagnosis and follow-up of diseases such as pyridoxine-dependent epilepsy. The principal metabolites involved in the disease are related to the first steps of lysine oxidation, either through the saccharopine or the pipecolate pathways. Currently, there are three different analytical methods used to assess the content of these metabolites in urine and plasma, but they require different sample preparations and analytical equipment. Here, we describe a protocol that calls for a simple sample preparation and uses liquid chromatography tandem mass spectrometry (LC-MS/MS) that allows simultaneous detection and quantification of underivatized l-saccharopine, l-aminoadipic acid, l-pipecolic acid, piperideine-6-carboxylate, l-glutamic acid, and pyridoxal-5-phosphate in plasma samples. To validate the method we analyzed the time course degradation after intraperitoneal injection of l-lysine in C57BL/6/J mice. We observed that the degradation of lysine through the saccharopine pathway reached a maximum within the first 2 h. At this time point there was an increase in the levels of the metabolites saccharopine, aminoadipic acid, and pipecolic acid by 3-, 24- and 3.4-fold, respectively, compared to time zero levels. These metabolites returned to basal levels after 4-6 h. In conclusion, we have developed a LC-MS/MS approach, which allows simultaneous analysis of lysine degradation metabolites without the need for derivatization.

SELECTION OF CITATIONS
SEARCH DETAIL
...