Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cytokine ; 62(2): 217-25, 2013 May.
Article in English | MEDLINE | ID: mdl-23534980

ABSTRACT

BACKGROUND: Cutaneous melanoma displays high morbidity and mortality rates. Isolated limb perfusion with melphalan (Mel) is used for the treatment of non-resectable, locally advanced extremity melanomas. When combined with tumor necrosis factor alpha (TNF-alpha) treatment, the complete response varies between 70% and 90%. The mechanisms underlying the effects of Mel and TNF-alpha are not completely understood. We evaluated the impact of systemic Mel and TNF-alpha administration on tumor growth, analyzed the morphological changes promoted by each treatment, and identified early expressed genes in response to Mel and TNF-alpha treatment, either alone or in combination, in a murine melanoma model. METHODS: Six- to eight-week-old male mice were subcutaneously inoculated with B16F10 melanoma cells and then intravenously injected with TNF-alpha, melphalan or a combination of both drugs when the tumors reached 1.0 cm(2). Tumor growth was monitored every other day, and histological analysis was performed when the tumors reached 3.0 cm(2). Total RNA was extracted from the resected tumors and submitted to amplification, labeling and hybridization on an oligonucleotide microarray (Fox Chase Cancer Center). Tumor growth and histological parameters were compared using ANOVA. Survival curves were calculated using the Kaplan-Meier method. Two-way ANOVA was used to identify differentially expressed genes among the various treatments, and Dunn's test was used for pair-wise comparisons. RESULTS: Systemic administration of Mel impaired tumor growth (p<0.001), improved animal survival (p<0.001), and decreased mitotic rate (p=0.049). Treatment with TNF-alpha alone had no impact, neither on tumor growth, nor on survival, but it increased necrosis (p<0.024) and decreased mitotic rates (p=0.001) in the tumors. Combined treatment with Mel and TNF-alpha had similar effects in tumor growth, survival, necrosis and mitotic rate as observed with individual treatments. Moreover, 118 genes were found differentially expressed by microarray analysis and 10% of them were validated by RT- real time PCR. In our model we found that the treatments regulate genes that play important roles in tumorigenesis such as cell adhesion (Pard3, Pecam1, Ilk, and Dlg5), proliferation (Tcfe3 and Polr1e), cell motility (Kifap3, Palld, and Arhgef6), apoptosis (Bcl2l11), and angiogenesis (Flt1 and Ptprj). CONCLUSIONS: Our data reproduces, in mice, some of the features observed in melanoma patients treated with the combination of Mel and TNF-alpha. The identification of genes with altered expression by these drugs both individually and in combination might help in the understanding of their mechanism of action and, as a consequence, improved strategies that could impact their clinical application.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Melanoma/drug therapy , Melphalan/therapeutic use , Tumor Necrosis Factor-alpha/therapeutic use , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Profiling , Male , Melanoma/genetics , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Neovascularization, Pathologic/genetics , Treatment Outcome
2.
Transl Oncol ; 3(1): 23-32, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20165692

ABSTRACT

Soft tissue tumors represent a group of neoplasia with different histologic and biological presentations varying from benign, locally confined to very aggressive and metastatic tumors. The molecular mechanisms responsible for such differences are still unknown. The understanding of these molecular alterations mechanism will be critical to discriminate patients who need systemic treatment from those that can be treated only locally and could also guide the development of new drugs' against this tumors. Using 102 tumor samples representing a large spectrum of these tumors, we performed expression profiling and defined differentially expression genes that are likely to be involved in tumors that are locally aggressive and in tumors with metastatic potential. We described a set of 12 genes (SNRPD3, MEGF9, SPTAN-1, AFAP1L2, ENDOD1, SERPIN5, ZWINTAS, TOP2A, UBE2C, ABCF1, MCM2, and ARL6IP5) showing opposite expression when these two conditions were compared. These genes are mainly related to cell-cell and cell-extracellular matrix interactions and cell proliferation and might represent helpful tools for a more precise classification and diagnosis as well as potential drug targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...