Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 13(9): e2303351, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38277705

ABSTRACT

In vitro engineered skin models are emerging as an alternative platform to reduce and replace animal testing in dermatological research. Despite the progress made in recent years, considerable challenges still exist for the inclusion of diverse cell types within skin models. Blood vessels, in particular, are essential in maintaining tissue homeostasis and are one of many primary contributors to skin disease inception and progression. Substantial efforts in the past have allowed the successful fabrication of vascularized skin models that are currently utilized for disease modeling and drugs/cosmetics testing. This review first discusses the need for vascularization within tissue-engineered skin models, highlighting their role in skin grafting and disease pathophysiology. Second, the review spotlights the milestones and recent progress in the fabrication and utilization of vascularized skin models. Additionally, advances including the use of bioreactors, organ-on-a-chip devices, and organoid systems are briefly explored. Finally, the challenges and future outlook for vascularized skin models are addressed.


Subject(s)
Skin Diseases , Tissue Engineering , Animals , Humans , Skin , Neovascularization, Pathologic , Organoids
2.
Int J Mol Sci ; 22(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34884827

ABSTRACT

Proprotein convertase subtilin/kexin type 9 (PCSK9) is a protease secreted mainly by hepatocytes and in lesser quantities by intestines, pancreas, and vascular cells. Over the years, this protease has gained importance in the field of cardiovascular biology due to its regulatory action on the low-density lipoprotein receptor (LDLR). However, recently, it has also been shown that PCSK9 acts independent of LDLR to cause vascular inflammation and increase the severity of several cardiovascular disorders. We hypothesized that PCSK9 affects the expression of chemokine receptors, major mediators of inflammation, to influence cardiovascular health. However, using overexpression of PCSK9 in murine models in vivo and PCSK9 stimulation of myeloid and vascular cells in vitro did not reveal influences of PCSK9 on the expression of certain chemokine receptors that are known to be involved in the development and progression of atherosclerosis and vascular inflammation. Hence, we conclude that the inflammatory effects of PCSK9 are not associated with the here investigated chemokine receptors and additional research is required to elucidate which mechanisms mediate PCSK9 effects independent of LDLR.


Subject(s)
Proprotein Convertase 9/metabolism , Receptors, Chemokine/metabolism , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/veterinary , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Leukocytes/cytology , Leukocytes/metabolism , Lipopolysaccharides/pharmacology , Liver/metabolism , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Proprotein Convertase 9/blood , Proprotein Convertase 9/genetics , Receptors, Chemokine/genetics
3.
Sci Rep ; 11(1): 21966, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34754042

ABSTRACT

Breast cancer cells (BCCs) preferentially metastasize to bone. It is known that BCCs remotely primes the distant bone site prior to metastasis. However, the reciprocal influence of bone cells on the primary tumor is relatively overlooked. Here, to study the bone-tumor paracrine influence, a tri-cellular 3-D vascularized breast cancer tissue (VBCTs) model is engineered which comprised MDA-MB231, a triple-negative breast cancer cells (TNBC), fibroblasts, and endothelial cells. This is indirectly co-cultured with osteoblasts (OBs), thereby constituting a complex quad-cellular tumor progression model. VBCTs alone and in conjunction with OBs led to abnormal vasculature and reduced vessel density but enhanced VEGF production. A total of 1476 significantly upregulated and 775 downregulated genes are identified in the VBCTs exposed to OBs. HSP90N, CYCS, RPS27A, and EGFR are recognized as upregulated hub-genes. Kaplan Meier plot shows HSP90N to have a significant outcome in TNBC patient survivability. Furthermore, compared to cancer tissues without vessels, gene analysis recognized 1278 significantly upregulated and 566 downregulated genes in VBCTs. DKK1, CXCL13, C3 protein and BMP4 are identified to be downregulated hub genes in VBCTs. Together, a multi-cellular breast cancer model and culture protocols are established to study pre-metastatic events in the presence of OBs.


Subject(s)
Neoplasm Metastasis , Neovascularization, Pathologic , Osteoblasts/pathology , Triple Negative Breast Neoplasms/blood supply , Cell Line, Tumor , Coculture Techniques , Female , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
4.
J Clin Med ; 10(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34501271

ABSTRACT

The search to improve therapies to prevent or treat cardiovascular diseases (CVDs) rages on, as CVDs remain a leading cause of death worldwide. Here, the main cause of CVDs, atherosclerosis, and its prevention, take center stage. Chemokines and their receptors have long been known to play an important role in the pathophysiological development of atherosclerosis. Their role extends from the initiation to the progression, and even the potential regression of atherosclerotic lesions. These important regulators in atherosclerosis are therefore an obvious target in the development of therapeutic strategies. A plethora of preclinical studies have assessed various possibilities for targeting chemokine signaling via various approaches, including competitive ligands and microRNAs, which have shown promising results in ameliorating atherosclerosis. Developments in the field also include detailed imaging with tracers that target specific chemokine receptors. Lastly, clinical trials revealed the potential of various therapies but still require further investigation before commencing clinical use. Although there is still a lot to be learned and investigated, it is clear that chemokines and their receptors present attractive yet extremely complex therapeutic targets. Therefore, this review will serve to provide a general overview of the connection between various chemokines and their receptors with atherosclerosis. The different developments, including mouse models and clinical trials that tackle this complex interplay will also be explored.

5.
Biomedicines ; 8(12)2020 11 28.
Article in English | MEDLINE | ID: mdl-33260660

ABSTRACT

High-density lipoprotein (HDL) is well-known for its cardioprotective effects, as it possesses anti-inflammatory, anti-oxidative, anti-thrombotic, and cytoprotective properties. Traditionally, studies and therapeutic approaches have focused on raising HDL cholesterol levels. Recently, it became evident that, not HDL cholesterol, but HDL composition and functionality, is probably a more fruitful target. In disorders, such as chronic kidney disease or cardiovascular diseases, it has been observed that HDL is modified and becomes dysfunctional. There are different modification that can occur, such as serum amyloid, an enrichment and oxidation, carbamylation, and glycation of key proteins. Additionally, the composition of HDL can be affected by changes to enzymes such as cholesterol ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), and phospholipid transfer protein (PLTP) or by modification to other important components. This review will highlight some main modifications to HDL and discuss whether these modifications are purely a consequential result of pathology or are actually involved in the pathology itself and have a causal role. Therefore, HDL composition may present a molecular target for the amelioration of certain diseases, but more information is needed to determine to what extent HDL modifications play a causal role in disease development.

SELECTION OF CITATIONS
SEARCH DETAIL
...