Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 92(11): 2214-2227, 2023 11.
Article in English | MEDLINE | ID: mdl-37750026

ABSTRACT

Disentangling empirically the many processes affecting spatial population synchrony is a challenge in population ecology. Two processes that could have major effects on the spatial synchrony of wild population dynamics are density dependence and variation in environmental conditions like temperature. Understanding these effects is crucial for predicting the effects of climate change on local and regional population dynamics. We quantified the direct contribution of local temperature and density dependence to spatial synchrony in the population dynamics of nine fish species inhabiting the Barents Sea. First, we estimated the degree to which the annual spatial autocorrelations in density are influenced by temperature. Second, we estimated and mapped the local effects of temperature and strength of density dependence on annual changes in density. Finally, we measured the relative effects of temperature and density dependence on the spatial synchrony in changes in density. Temperature influenced the annual spatial autocorrelation in density more in species with greater affinities to the benthos and to warmer waters. Temperature correlated positively with changes in density in the eastern Barents Sea for most species. Temperature had a weak synchronizing effect on density dynamics, while increasing strength of density dependence consistently desynchronised the dynamics. Quantifying the relative effects of different processes affecting population synchrony is important to better predict how population dynamics might change when environmental conditions change. Here, high degrees of spatial synchrony in the population dynamics remained unexplained by local temperature and density dependence, confirming the presence of additional synchronizing drivers, such as trophic interactions or harvesting.


Subject(s)
Ecology , Ecosystem , Animals , Temperature , Population Dynamics
2.
Ecology ; 102(12): e03523, 2021 12.
Article in English | MEDLINE | ID: mdl-34460952

ABSTRACT

The degree of spatial autocorrelation in population fluctuations increases with dispersal and geographical covariation in the environment, and decreases with strength of density dependence. Because the effects of these processes can vary throughout an individual's lifespan, we studied how spatial autocorrelation in abundance changed with age in three marine fish species in the Barents Sea. We found large interspecific differences in age-dependent patterns of spatial autocorrelation in density. Spatial autocorrelation increased with age in cod, the reverse trend was found in beaked redfish, while it remained constant among age classes in haddock. We also accounted for the average effect of local cohort dynamics, i.e. the expected local density of an age class given last year's local density of the cohort, with the goal of disentangling spatial autocorrelation patterns acting on an age class from those formed during younger age classes and being carried over. We found that the spatial autocorrelation pattern of older age classes became increasingly determined by the distribution of the cohort during the previous year. Lastly, we found high degrees of autocorrelation over long distances for the three species, suggesting the presence of far-reaching autocorrelating processes on these populations. We discuss how differences in the species' life history strategies could cause the observed differences in age-specific variation in spatial autocorrelation. As spatial autocorrelation can differ among age classes, our study indicates that fluctuations in age structure can influence the spatio-temporal variation in abundance of marine fish populations.


Subject(s)
Fishes , Perciformes , Aged , Animals , Humans , Population Density , Population Dynamics , Spatial Analysis
3.
Glob Chang Biol ; 26(4): 2028-2041, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31849126

ABSTRACT

Sea ice loss may have dramatic consequences for population connectivity, extinction-colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we assess the population-genetic implications of diminishing sea ice cover in the endemic, high Arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) by analyzing the interactive effects of landscape barriers and reintroductions (following harvest-induced extirpations) on their metapopulation genetic structure. We genotyped 411 wild reindeer from 25 sampling sites throughout the entire subspecies' range at 19 microsatellite loci. Bayesian clustering analysis showed a genetic structure composed of eight populations, of which two were admixed. Overall population genetic differentiation was high (mean FST  = 0.21). Genetic diversity was low (allelic richness [AR] = 2.07-2.58; observed heterozygosity = 0.23-0.43) and declined toward the outer distribution range, where populations showed significant levels of inbreeding. Coalescent estimates of effective population sizes and migration rates revealed strong evolutionary source-sink dynamics with the central population as the main source. The population genetic structure was best explained by a landscape genetics model combining strong isolation by glaciers and open water, and high connectivity by dispersal across winter sea ice. However, the observed patterns of natural isolation were strongly modified by the signature of past harvest-induced extirpations, subsequent reintroductions, and recent lack of sea ice. These results suggest that past and current anthropogenic drivers of metapopulation dynamics may have interactive effects on large-scale ecological and evolutionary processes. Continued loss of sea ice as a dispersal corridor within and between island systems is expected to increase the genetic isolation of populations, and thus threaten the evolutionary potential and persistence of Arctic wildlife.

4.
Ecol Lett ; 22(11): 1787-1796, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31379127

ABSTRACT

The synchrony of population dynamics in space has important implications for ecological processes, for example affecting the spread of diseases, spatial distributions and risk of extinction. Here, we studied the relationship between spatial scaling in population dynamics and species position along the slow-fast continuum of life history variation. Specifically, we explored how generation time, growth rate and mortality rate predicted the spatial scaling of abundance and yearly changes in abundance of eight marine fish species. Our results show that population dynamics of species' with 'slow' life histories are synchronised over greater distances than those of species with 'fast' life histories. These findings provide evidence for a relationship between the position of the species along the life history continuum and population dynamics in space, showing that the spatial distribution of abundance may be related to life history characteristics.


Subject(s)
Fishes , Animals , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...