Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 38(4): 955-71, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26753554

ABSTRACT

Urban community gardens provide affordable, locally grown, healthy foods and many other benefits. However, urban garden soils can contain lead (Pb) that may pose risks to human health. To help evaluate these risks, we measured Pb concentrations in soil, vegetables, and chicken eggs from New York City community gardens, and we asked gardeners about vegetable consumption and time spent in the garden. We then estimated Pb intakes deterministically and probabilistically for adult gardeners, children who spend time in the garden, and adult (non-gardener) household members. Most central tendency Pb intakes were below provisional total tolerable intake (PTTI) levels. High contact intakes generally exceeded PTTIs. Probabilistic estimates showed approximately 40 % of children and 10 % of gardeners exceeding PTTIs. Children's exposure came primarily from dust ingestion and exposure to higher Pb soil between beds. Gardeners' Pb intakes were comparable to children's (in µg/day) but were dominated by vegetable consumption. Adult household members ate less garden-grown produce than gardeners and had the lowest Pb intakes. Our results suggest that healthy gardening practices to reduce Pb exposure in urban community gardens should focus on encouraging cultivation of lower Pb vegetables (i.e., fruits) for adult gardeners and on covering higher Pb non-bed soils accessible to young children. However, the common practice of replacement of root-zone bed soil with clean soil (e.g., in raised beds) has many benefits and should also continue to be encouraged.


Subject(s)
Food Contamination/analysis , Gardening , Lead/analysis , Adult , Child , Dust/analysis , Eggs/analysis , Environmental Monitoring , Humans , New York City , Soil Pollutants/analysis , Vegetables/chemistry
2.
Environ Toxicol Chem ; 35(2): 357-67, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26636429

ABSTRACT

A total of 69 soil samples from 20 community gardens in New York City (New York, USA) were collected and analyzed for 23 polycyclic aromatic hydrocarbons (PAHs) and black carbon. For each garden, samples were collected from nongrowing areas (non-bed) and from vegetable-growing beds, including beds with and without visible sources of PAHs. The sum of the US Environmental Protection Agency's 16 priority PAHs ranged up to 150 mg/kg, and the median (5.4 mg/kg) and mean (14.2 mg/kg) were similar to those previously reported for urban areas in the northeast United States. Isomer ratios indicated that the main sources of PAHs were petroleum, coal, and wood combustion. The PAH concentrations were significantly and positively associated with black carbon and with modeled air PAH concentrations, suggesting a consistent relationship between historical deposition of atmospheric carbon-adsorbed PAHs and current PAH soil concentrations. Median PAH soil concentration from non-bed areas was higher (7.4 mg/kg) than median concentration from beds in the same garden (4.0 mg/kg), and significantly higher than the median from beds without visible sources of PAHs (3.5 mg/kg). Median PAH concentration in beds from gardens with records of soil amendments was 58% lower compared with beds from gardens without those records. These results suggest that gardening practices in garden beds without visible sources of PAHs contribute to reduce PAH soil concentrations.


Subject(s)
Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Soil/chemistry , Air Pollutants/analysis , Carbon/analysis , Isomerism , Models, Theoretical , New York City , Vegetables
3.
Water Air Soil Pollut ; 226(8): 265, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26900187

ABSTRACT

The potential for lead (Pb) and arsenic (As) transfer into vegetables was studied on old orchard land contaminated by lead arsenate pesticides. Root (carrot), leafy (lettuce), and vegetable fruits (green bean, tomato) were grown on seven "miniplots" with soil concentrations ranging from near background to ≈ 800 and ≈ 200 mg kg-1 of total Pb and As, respectively. Each miniplot was divided into sub-plots and amended with 0% (control), 5% and 10% (by weight) compost and cropped for 3 years. Edible portions of each vegetable were analyzed for total Pb and As to test the effect of organic matter on transfer of these toxic elements into the crop. Vegetable Pb and As concentrations were strongly correlated to soil total Pb and As, respectively, but not to soil organic matter content or compost addition level. For Pb vegetable concentrations, carrot ≥ lettuce > bean > tomato. For As, lettuce > carrot > bean > tomato. A complementary single-year study of lettuce, arugula, spinach, and collards revealed a beneficial effect of compost in reducing both Pb and As concentrations in leafy vegetables. Comparisons of all measured vegetable concentrations to international health-based standards indicate that tomatoes can be grown without exceeding standards even in substantially Pb- and As-contaminated soils, but carrots and leafy greens may exceed standards when grown in soils with more than 100-200 mg kg-1 Pb. Leafy greens may also exceed health-based standards in gardens where soil As is elevated, with arugula having a particularly strong tendency to accumulate As.

4.
Environ Pollut ; 194: 254-261, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25163429

ABSTRACT

Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability.


Subject(s)
Barium/analysis , Cadmium/analysis , Lead/analysis , Soil Pollutants/analysis , Vegetables/chemistry , Food Contamination/analysis , Gardening , New York City , Plant Roots/chemistry , Soil/chemistry
5.
Environ Pollut ; 187: 162-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24502997

ABSTRACT

Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures.


Subject(s)
Environmental Monitoring , Gardening , Metals/analysis , Soil Pollutants/analysis , Cadmium/analysis , Environmental Pollution/statistics & numerical data , Humans , Lead/analysis , New York City , Soil/chemistry , Zinc/analysis
6.
Soil Sci ; 177(11): 650-654, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23439963

ABSTRACT

Soil has been identified as a significant source of lead (Pb) exposure for both children and adults. Therefore, identifying possibly contaminated soils by soil testing is important to protect public health. Soil Pb test results are usually reported as total Pb (mg kg(-1)), carried out using a concentrated nitric acid digestion procedure by hot plate (EPA method 3050) or microwave (EPA method 3051) followed by inductively coupled plasma atomic emission spectrometry to determine total Pb in the digest. However, this procedure is both time-consuming and expensive, sometimes costing homeowners and gardeners over $50 per sample. To make soil Pb testing more economically accessible to homeowners and gardeners, several university soil-testing laboratories offer less expensive screening tests designed to estimate total soil Pb. The first objective of this study was to compare three commonly used screening tests, modified Morgan (MM), Mehlich 3 (M3), and 1 M nitric acid (HNO(3)), to the standard total Pb testing method (EPA method 3051) to find which extractant is the most reliable predictor of total Pb. The second objective was to investigate the effect that different degrees of soil grinding have on the total Pb test and the extracted Pb concentration measured from the 1 M HNO(3) test. Results indicate that the strongest predictor of total Pb is 1 M HNO(3), followed by M3, and MM, and that thorough grinding is necessary if using less than five grams of soil in a Pb test, in order to adequately homogenize Pb-contaminated samples and achieve acceptable testing reproducibility.

7.
J Cell Biochem ; 103(2): 636-47, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-17960587

ABSTRACT

Estrogens play a key role in the development and evolution of breast cancer tumors. Estrogen receptor alpha (ERalpha) mediates many of the biological activities of estrogens, and its expression is associated with low invasiveness and good prognosis. Recent epidemiological reports suggest that long-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is implicated in the increased incidence of breast cancer in exposed women. TCDD interferes with the expression of some ERalpha-dependent genes and inhibits estradiol (E2)- dependent growth of breast cancer cells in vitro. However, E2-dependent xenographs of MCF-7 human breast cancer cells resumed growth after a 2-week exposure to TCDD. The mechanisms involved in the resumption of cell growth are not completely understood. In this study, we show that short term-exposure (16 days) to 1 nM TCDD results in the suppression of ERalpha protein expression, while chronic exposure for more than 1 year (LTDX cells) results in the partial re-expression of the receptor. Immunocytochemistry studies showed that re-expression of ERalpha in LTDX cells occurred in some of the cells. Analysis by Western immunoblots indicated that four out of five LTDX clones expressed ERalpha at levels comparable to those in unexposed MCF-7 cells. Removal of TCDD treatment for 16 days restored the expression of ERalpha in the ERalpha-negative clonal cells. These results suggest that MCF-7 cells chronically exposed to TCDD contain at least two cell subpopulations that may respond differently to the ERalpha-mediated effects of TCDD.


Subject(s)
Adenocarcinoma/pathology , Breast Neoplasms/pathology , Estrogen Receptor alpha/biosynthesis , Estrogens , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Proteins/biosynthesis , Polychlorinated Dibenzodioxins/pharmacology , Adenocarcinoma/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Clone Cells/drug effects , Clone Cells/metabolism , Cytochrome P-450 CYP1A1/metabolism , Drug Resistance , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Female , Humans , Neoplasm Proteins/genetics , Polychlorinated Dibenzodioxins/administration & dosage , Polychlorinated Dibenzodioxins/toxicity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...