Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 84(5): 675-687, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38190717

ABSTRACT

Therapy resistance and metastatic progression are primary causes of cancer-related mortality. Disseminated tumor cells possess adaptive traits that enable them to reprogram their metabolism, maintain stemness, and resist cell death, facilitating their persistence to drive recurrence. The survival of disseminated tumor cells also depends on their ability to modulate replication stress in response to therapy while colonizing inhospitable microenvironments. In this study, we discovered that the nuclear translocation of AXL, a TAM receptor tyrosine kinase, and its interaction with WRNIP1, a DNA replication stress response factor, promotes the survival of HER2+ breast cancer cells that are resistant to HER2-targeted therapy and metastasize to the brain. In preclinical models, knocking down or pharmacologically inhibiting AXL or WRNIP1 attenuated protection of stalled replication forks. Furthermore, deficiency or inhibition of AXL and WRNIP1 also prolonged metastatic latency and delayed relapse. Together, these findings suggest that targeting the replication stress response, which is a shared adaptive mechanism in therapy-resistant and metastasis-initiating cells, could reduce metachronous metastasis and enhance the response to standard-of-care therapies. SIGNIFICANCE: Nuclear AXL and WRNIP1 interact and mediate replication stress response, promote therapy resistance, and support metastatic progression, indicating that targeting the AXL/WRNIP1 axis is a potentially viable therapeutic strategy for breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Axl Receptor Tyrosine Kinase , Proto-Oncogene Proteins/metabolism , Neoplasm Recurrence, Local , Receptor Protein-Tyrosine Kinases/metabolism , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Tumor Microenvironment , ATPases Associated with Diverse Cellular Activities/metabolism , DNA-Binding Proteins/metabolism
2.
Nat Cancer ; 4(6): 893-907, 2023 06.
Article in English | MEDLINE | ID: mdl-37248394

ABSTRACT

Disseminated tumor cells with metabolic flexibility to utilize available nutrients in distal organs persist, but the precise mechanisms that facilitate metabolic adaptations remain unclear. Here we show fragmented mitochondrial puncta in latent brain metastatic (Lat) cells enable fatty acid oxidation (FAO) to sustain cellular bioenergetics and maintain redox homeostasis. Depleting the enriched dynamin-related protein 1 (DRP1) and limiting mitochondrial plasticity in Lat cells results in increased lipid droplet accumulation, impaired FAO and attenuated metastasis. Likewise, pharmacological inhibition of DRP1 using a small-molecule brain-permeable inhibitor attenuated metastatic burden in preclinical models. In agreement with these findings, increased phospho-DRP1 expression was observed in metachronous brain metastasis compared with patient-matched primary tumors. Overall, our findings reveal the pivotal role of mitochondrial plasticity in supporting the survival of Lat cells and highlight the therapeutic potential of targeting cellular plasticity programs in combination with tumor-specific alterations to prevent metastatic recurrences.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Dynamins/metabolism , Mitochondria/metabolism , Cell Line, Tumor , Brain Neoplasms/drug therapy
3.
Cancer Discov ; 13(1): 85-97, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36098678

ABSTRACT

Cell competition, a fitness-sensing process, is essential for tissue homeostasis. Using cancer metastatic latency models, we show that cell competition results in the displacement of latent metastatic (Lat-M) cells from the primary tumor. Lat-M cells resist anoikis and survive as residual metastatic disease. A memodeled extracellular matrix facilitates Lat-M cell displacement and survival in circulation. Disrupting cell competition dynamics by depleting secreted protein and rich in cysteine (SPARC) reduced displacement from orthotopic tumors and attenuated metastases. In contrast, depletion of SPARC after extravasation in lung-resident Lat-M cells increased metastatic outgrowth. Furthermore, multiregional transcriptomic analyses of matched primary tumors and metachronous metastases from patients with kidney cancer identified tumor subclones with Lat-M traits. Kidney cancer enriched for these Lat-M traits had a rapid onset of metachronous metastases and significantly reduced disease-free survival. Thus, an unexpected consequence of cell competition is the displacement of cells with Lat-M potential, thereby shaping metastatic latency and relapse. SIGNIFICANCE: We demonstrate that cell competition within the primary tumor results in the displacement of Lat-M cells. We further show the impact of altering cell competition dynamics on metastatic incidence that may guide strategies to limit metastatic recurrences. This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Herpesvirus 1, Human , Kidney Neoplasms , Humans , Cell Competition , Virus Latency , Neoplasm Recurrence, Local , Kidney Neoplasms/genetics
4.
STAR Protoc ; 3(2): 101345, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35496802

ABSTRACT

Analyzing the metabolic dependencies of tumor cells is vital for cancer diagnosis and treatment. Here, we describe a protocol for 13C-stable glucose and glutamine isotope tracing in mice HER2+ breast cancer brain metastatic lesions. We describe how to inject cancer cells intracardially to generate brain metastatic lesions in mice. We then detail how to perform 13C-stable isotope infusion in mice with established brain metastasis. Finally, we outline steps for sample collection, processing for metabolite extraction, and analyzing mass spectrometry data. For complete details on the use and execution of this protocol, please refer to Parida et al. (2022).


Subject(s)
Brain Neoplasms , Metabolomics , Animals , Brain Neoplasms/diagnosis , Isotope Labeling/methods , Isotopes , Mass Spectrometry , Metabolomics/methods , Mice
5.
Cell Metab ; 34(1): 90-105.e7, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34986341

ABSTRACT

HER2+ breast cancer patients are presented with either synchronous (S-BM), latent (Lat), or metachronous (M-BM) brain metastases. However, the basis for disparate metastatic fitness among disseminated tumor cells of similar oncotype within a distal organ remains unknown. Here, employing brain metastatic models, we show that metabolic diversity and plasticity within brain-tropic cells determine metastatic fitness. Lactate secreted by aggressive metastatic cells or lactate supplementation to mice bearing Lat cells limits innate immunosurveillance and triggers overt metastasis. Attenuating lactate metabolism in S-BM impedes metastasis, while M-BM adapt and survive as residual disease. In contrast to S-BM, Lat and M-BM survive in equilibrium with innate immunosurveillance, oxidize glutamine, and maintain cellular redox homeostasis through the anionic amino acid transporter xCT. Moreover, xCT expression is significantly higher in matched M-BM brain metastatic samples compared to primary tumors from HER2+ breast cancer patients. Inhibiting xCT function attenuates residual disease and recurrence in these preclinical models.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Animals , Brain/metabolism , Brain Neoplasms/secondary , Breast Neoplasms/metabolism , Female , Humans , Mice
6.
Nat Commun ; 12(1): 5760, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34608135

ABSTRACT

Metastasis is the principal cause of cancer related deaths. Tumor invasion is essential for metastatic spread. However, determinants of invasion are poorly understood. We addressed this knowledge gap by leveraging a unique attribute of kidney cancer. Renal tumors invade into large vessels forming tumor thrombi (TT) that migrate extending sometimes into the heart. Over a decade, we prospectively enrolled 83 ethnically-diverse patients undergoing surgical resection for grossly invasive tumors at UT Southwestern Kidney Cancer Program. In this study, we perform comprehensive histological analyses, integrate multi-region genomic studies, generate in vivo models, and execute functional studies to define tumor invasion and metastatic competence. We find that invasion is not always associated with the most aggressive clone. Driven by immediate early genes, invasion appears to be an opportunistic trait attained by subclones with diverse oncogenomic status in geospatial proximity to vasculature. We show that not all invasive tumors metastasize and identify determinants of metastatic competency. TT associated with metastases are characterized by higher grade, mTOR activation and a particular immune contexture. Moreover, TT grade is a better predictor of metastasis than overall tumor grade, which may have implications for clinical practice.


Subject(s)
Carcinoma, Renal Cell/secondary , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/pathology , Thrombosis/genetics , Aged , Animals , Carcinoma, Renal Cell/complications , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , DNA Copy Number Variations , Female , Humans , Kidney/blood supply , Kidney/pathology , Kidney Neoplasms/complications , Kidney Neoplasms/diagnosis , Kidney Neoplasms/genetics , Male , Mice , Middle Aged , Neoplasm Grading , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Prospective Studies , RNA-Seq , Risk Factors , Thrombosis/pathology , Exome Sequencing , Xenograft Model Antitumor Assays
7.
Front Immunol ; 10: 1836, 2019.
Article in English | MEDLINE | ID: mdl-31447846

ABSTRACT

Metastatic relapse is observed in cancer patients with no clinical evidence of disease for months to decades after initial diagnosis and treatment. Disseminated cancer cells that are capable of entering reversible cell cycle arrest are believed to be responsible for these late metastatic relapses. Dynamic interactions between the latent disseminated tumor cells and their surrounding microenvironment aid cancer cell survival and facilitate escape from immune surveillance. Here, we highlight findings from preclinical models that provide a conceptual framework to define and target the latent metastatic phase of tumor progression. The hope is by identifying patients harboring latent metastatic cells and providing therapeutic options to eliminate metastatic seeds prior to their emergence will result in long lasting cures.


Subject(s)
Neoplasm Metastasis , Endoplasmic Reticulum Stress/physiology , Extracellular Matrix/physiology , Humans , Leukocytes/physiology , Neoplasm Metastasis/pathology , Neoplasm Metastasis/physiopathology , Neoplasm, Residual , Neoplastic Cells, Circulating , Recurrence , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...