Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388514

ABSTRACT

90Y-microsphere radioembolization has become a well-established treatment option for liver malignancies and is one of the first U.S. Food and Drug Administration-approved unsealed radionuclide brachytherapy devices to incorporate dosimetry-based treatment planning. Several different mathematical models are used to calculate the patient-specific prescribed activity of 90Y, namely, body surface area (SIR-Spheres only), MIRD single compartment, and MIRD dual compartment (partition). Under the auspices of the MIRDsoft initiative to develop community dosimetry software and tools, the body surface area, MIRD single-compartment, MIRD dual-compartment, and MIRD multicompartment models have been integrated into a MIRDy90 software worksheet. The worksheet was built in MS Excel to estimate and compare prescribed activities calculated via these respective models. The MIRDy90 software was validated against available tools for calculating 90Y prescribed activity. The results of MIRDy90 calculations were compared with those obtained from vendor and community-developed tools, and the calculations agreed well. The MIRDy90 worksheet was developed to provide a vetted tool to better evaluate patient-specific prescribed activities calculated via different models, as well as model influences with respect to varying input parameters. MIRDy90 allows users to interact and visualize the results of various parameter combinations. Variables, equations, and calculations are described in the MIRDy90 documentation and articulated in the MIRDy90 worksheet. The worksheet is distributed as a free tool to build expertise within the medical physics community and create a vetted standard for model and variable management.

2.
Med Phys ; 50(12): 7390-7399, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37656137

ABSTRACT

BACKGROUND: Potential risk associated with low-dose radiation exposures is often expressed using the effective dose (E) quantity. Other risk-related quantities have been proposed as alternatives. The recently introduced risk index (RI) shares similarities with E but expands the metric to incorporate medical imaging-appropriate risks factors including patient-specific size, age, and sex. PURPOSE: The aim of this work is to examine the RI metric for quantifying stochastic radiation risk and demonstrate its applications in nuclear imaging. The advantages in this improved metric may help the field progress toward stratified risk consideration in the course of patient management, improve efforts for procedure optimization, and support an evolution in the science of radiation risk assessment. METHODS: In this study we describe, implement, and calculate RI for various diagnostic nuclear imaging scenarios using reference biokinetics published in ICRP Publication 128 for commonly utilized radiopharmaceuticals. All absorbed dose, E and RI calculations were performed using the freely available MIRDcalc nuclear medicine dosimetry software; the organ specific risk parameters used in the software are also benchmarked in this text. The resulting RI and E values are compared and various trends in RI values identified. RESULTS: E and RI coefficients were calculated for 3016 use cases. Notably RI values vary depending on patient characteristics. Overall, across the population, global trends in RI values can be identified. In general, RI values were 2.15 times higher for females than males, due to higher risk coefficients and activities being distributed in smaller reference masses. The pediatric patients showed higher RIs than adults, as younger patients generally receive higher absorbed doses per administered activity, and are more radiosensitive, and have a longer projected lifespan at risk. A compendium of E and RI values is also provided in table format to serve as a reference for the community. CONCLUSIONS: RI is a rational quantity that could be used for justification, risk communication and protocol optimization in medical imaging. It has some advantages when compared to the long-utilized E value with respect to personalization, since accounts for patient size, age, sex, and natural incidence of cancer risk.


Subject(s)
Radiometry , Radiopharmaceuticals , Male , Adult , Female , Humans , Child , Radiation Dosage , Radiometry/methods , Software , Radiography , Phantoms, Imaging
4.
J Nucl Med ; 64(5): 704-710, 2023 05.
Article in English | MEDLINE | ID: mdl-36460344

ABSTRACT

Our aim was to report the use of 64Cu and 67Cu as a theranostic pair of radionuclides in human subjects. An additional aim was to measure whole-organ dosimetry of 64Cu and 67Cu attached to the somatostatin analog octreotate using the sarcophagine MeCOSar chelator (SARTATE) in subjects with somatostatin receptor-expressing lesions confined to the cranium, thereby permitting normal-organ dosimetry for the remainder of the body. Methods: Pretreatment PET imaging studies were performed up to 24 h after injection of [64Cu]Cu-SARTATE, and normal-organ dosimetry was estimated using OLINDA/EXM. Subsequently, the trial subjects with multifocal meningiomas were given therapeutic doses of [67Cu]Cu-SARTATE and imaged over several days using SPECT/CT. Results: Five subjects were initially recruited and imaged using PET/CT before treatment. Three of the subjects were subsequently administered 4 cycles each of [67Cu]Cu-SARTATE followed by multiple SPECT/CT imaging time points. No serious adverse events were observed, and no adverse events led to withdrawal from the study or discontinuation from treatment. The estimated mean effective dose was 3.95 × 10-2 mSv/MBq for [64Cu]Cu-SARTATE and 7.62 × 10-2 mSv/MBq for [67Cu]Cu-SARTATE. The highest estimated organ dose was in spleen, followed by kidneys, liver, adrenals, and small intestine. The matched pairing was shown by PET and SPECT intrasubject imaging to have nearly identical targeting to tumors for guiding therapy, demonstrating a potentially accurate and precise theranostic product. Conclusion: 64Cu and 67Cu show great promise as a theranostic pair of radionuclides. Further clinical studies will be required to examine the therapeutic dose required for [67Cu]Cu-SARTATE for various indications. In addition, the ability to use predictive 64Cu-based dosimetry for treatment planning with 67Cu should be further explored.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningioma/diagnostic imaging , Meningioma/radiotherapy , Positron Emission Tomography Computed Tomography/methods , Radioisotopes , Radiometry , Radiopharmaceuticals/therapeutic use , Tissue Distribution
5.
Sci Rep ; 11(1): 2475, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510222

ABSTRACT

Positron (ß+) emitting radionuclides have been used for positron emission tomography (PET) imaging in diagnostic medicine since its development in the 1950s. Development of a fluorinated glucose analog, fluorodeoxyglucose, labelled with a ß+ emitter fluorine-18 (18F-FDG), made it possible to image cellular targets with high glycolytic metabolism. These targets include cancer cells based on increased aerobic metabolism due to the Warburg effect, and thus, 18F-FDG is a staple in nuclear medicine clinics globally. However, due to its attention in the diagnostic setting, the therapeutic potential of ß+ emitters have been overlooked in cancer medicine. Here we show the first in vitro evidence of ß+ emitter cytotoxicity on prostate cancer cell line LNCaP C4-2B when treated with 20 Gy of 18F. Monte Carlo simulation revealed thermalized positrons (sub-keV) traversing DNA can be lethal due to highly localized energy deposition during the thermalization and annihilation processes. The computed single and double strand breakages were ~ 55% and 117% respectively, when compared to electrons at 400 eV. Our in vitro and in silico data imply an unexplored therapeutic potential for ß+ emitters. These results may also have implications for emerging cancer theranostic strategies, where ß+ emitting radionuclides could be utilized as a therapeutic as well as a diagnostic agent once the challenges in radiation safety and protection after patient administration of a radioactive compound are overcome.


Subject(s)
Beta Particles , Electrons , Positron-Emission Tomography , Prostatic Neoplasms , Cell Line, Tumor , Fluorodeoxyglucose F18/pharmacology , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/radiotherapy , Radiation Dosage , Radiopharmaceuticals/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...