Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 6076, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30967561

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

2.
Sci Rep ; 8(1): 897, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343833

ABSTRACT

The recent increase in the number of X-ray crystal structures of G-protein coupled receptors (GPCRs) has been enabling for structure-based drug design (SBDD) efforts. These structures have revealed that GPCRs are highly dynamic macromolecules whose function is dependent on their intrinsic flexibility. Unfortunately, the use of static structures to understand ligand binding can potentially be misleading, especially in systems with an inherently high degree of conformational flexibility. Here, we show that docking a set of dopamine D3 receptor compounds into the existing eticlopride-bound dopamine D3 receptor (D3R) X-ray crystal structure resulted in poses that were not consistent with results obtained from site-directed mutagenesis experiments. We overcame the limitations of static docking by using large-scale high-throughput molecular dynamics (MD) simulations and Markov state models (MSMs) to determine an alternative pose consistent with the mutation data. The new pose maintains critical interactions observed in the D3R/eticlopride X-ray crystal structure and suggests that a cryptic pocket forms due to the shift of a highly conserved residue, F6.52. Our study highlights the importance of GPCR dynamics to understand ligand binding and provides new opportunities for drug discovery.


Subject(s)
Receptors, Dopamine D3/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Animals , Binding Sites/physiology , Cell Line , Crystallography, X-Ray/methods , Humans , Ligands , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , Mutagenesis, Site-Directed/methods , Protein Binding/physiology , Salicylamides/chemistry , Salicylamides/metabolism , Sf9 Cells
3.
J Med Chem ; 56(22): 9180-91, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24215237

ABSTRACT

Positive allosteric modulators ("potentiators") of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR) enhance excitatory neurotransmission and may improve the cognitive deficits associated with various neurological disorders. The dihydroisoxazole (DHI) series of AMPAR potentiators described herein originated from the identification of 7 by a high-throughput functional activity screen using mouse embryonic stem (mES) cell-derived neuronal precursors. Subsequent structure-based drug design using X-ray crystal structures of the ligand-binding domain of human GluA2 led to the discovery of both PF-04725379 (11), which in tritiated form became a novel ligand for characterizing the binding affinities of subsequent AMPAR potentiators in rat brain homogenate, and PF-04701475 (8a), a prototype used to explore AMPAR-mediated pharmacology in vivo. Lead series optimization provided 16a, a functionally potent compound lacking the potentially bioactivatable aniline within 8a, but retaining desirable in vitro ADME properties.


Subject(s)
Drug Discovery , Isoxazoles/chemistry , Isoxazoles/pharmacology , Receptors, AMPA/metabolism , Absorption , Allosteric Regulation/drug effects , Animals , High-Throughput Screening Assays , Humans , Isoxazoles/metabolism , Isoxazoles/pharmacokinetics , Male , Mice , Models, Molecular , Protein Structure, Tertiary , Rats , Receptors, AMPA/chemistry , Structure-Activity Relationship
4.
J Med Chem ; 56(13): 5541-52, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23755848

ABSTRACT

Herein we describe the structure-aided design and synthesis of a series of pyridone-conjugated monobactam analogues with in vitro antibacterial activity against clinically relevant Gram-negative species including Pseudomonas aeruginosa , Klebsiella pneumoniae , and Escherichia coli . Rat pharmacokinetic studies with compound 17 demonstrate low clearance and low plasma protein binding. In addition, evidence is provided for a number of analogues suggesting that the siderophore receptors PiuA and PirA play a role in drug uptake in P. aeruginosa strain PAO1.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Monobactams/pharmacology , Pyridones/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Escherichia coli/drug effects , Inhibitory Concentration 50 , Klebsiella pneumoniae/drug effects , Male , Microbial Sensitivity Tests , Molecular Structure , Monobactams/chemistry , Monobactams/pharmacokinetics , Pseudomonas aeruginosa/drug effects , Pyridones/chemistry , Pyridones/pharmacokinetics , Rats , Rats, Wistar
5.
Nat Commun ; 4: 1888, 2013.
Article in English | MEDLINE | ID: mdl-23695682

ABSTRACT

The constituent polypeptides of the interleukin-17 family form six different homodimeric cytokines (IL-17A-F) and the heterodimeric IL-17A/F. Their interactions with IL-17 receptors A-E (IL-17RA-E) mediate host defenses while also contributing to inflammatory and autoimmune responses. IL-17A and IL-17F both preferentially engage a receptor complex containing one molecule of IL-17RA and one molecule of IL-17RC. More generally, IL-17RA appears to be a shared receptor that pairs with other members of its family to allow signaling of different IL-17 cytokines. Here we report crystal structures of homodimeric IL-17A and its complex with IL-17RA. Binding to IL-17RA at one side of the IL-17A molecule induces a conformational change in the second, symmetry-related receptor site of IL-17A. This change favors, and is sufficient to account for, the selection of a different receptor polypeptide to complete the cytokine-receptor complex. The structural results are supported by biophysical studies with IL-17A variants produced by site-directed mutagenesis.


Subject(s)
Interleukin-17/chemistry , Receptors, Interleukin-17/chemistry , Allosteric Regulation , Amino Acid Sequence , Conserved Sequence , Crystallization , Crystallography, X-Ray , HEK293 Cells , Humans , Interleukin-17/metabolism , Models, Molecular , Molecular Sequence Data , Mutagenesis , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Interleukin-17/metabolism , Surface Plasmon Resonance
6.
Bioorg Med Chem Lett ; 23(6): 1727-31, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23414806

ABSTRACT

A novel series of 3-O-carbamoyl erythromycin A derived analogs, labeled carbamolides, with activity versus resistant bacterial isolates of staphylococci (including macrolide and oxazolidinone resistant strains) and streptococci are reported. An (R)-2-aryl substituent on a pyrrolidine carbamate appeared to be critical for achieving potency against resistant strains. Crystal structures showed a distinct aromatic interaction between the (R)-2-aryl (3-pyridyl for 4d) substituent on the pyrrolidine and G2484 (G2505, Escherichia coli) of the Deinococcus radiodurans 50S ribosome (3.2Å resolution).


Subject(s)
Anti-Bacterial Agents/chemistry , Erythromycin/analogs & derivatives , Methylurea Compounds/chemistry , Staphylococcus/isolation & purification , Streptococcus/isolation & purification , Anti-Bacterial Agents/chemical synthesis , Binding Sites , Crystallography, X-Ray , Deinococcus/metabolism , Drug Resistance, Bacterial , Erythromycin/chemical synthesis , Escherichia coli/metabolism , Microbial Sensitivity Tests , Protein Structure, Tertiary , Pyrrolidines/chemistry , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Bacterial/metabolism , Staphylococcus/drug effects , Streptococcus/drug effects
7.
J Biol Chem ; 286(48): 41510-41519, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-21953464

ABSTRACT

Inhibition of acetyl-CoA carboxylases (ACCs), a crucial enzyme for fatty acid metabolism, has been shown to promote fatty acid oxidation and reduce body fat in animal models. Therefore, ACCs are attractive targets for structure-based inhibitor design, particularly the carboxyltransferase (CT) domain, which is the primary site for inhibitor interaction. We have cloned, expressed, and purified the CT domain of human ACC2 using baculovirus-mediated insect cell expression system. However, attempts to crystallize the human ACC2 CT domain have not been successful in our hands. Hence, we have been using the available crystal structure of yeast CT domain to design human ACC inhibitors. Unfortunately, as the selectivity of the lead series has increased against the full-length human enzyme, the potency against the yeast enzyme has decreased significantly. This loss of potency against the yeast enzyme correlated with a complete lack of binding of the human-specific compounds to crystals of the yeast CT domain. Here, we address this problem by converting nine key active site residues of the yeast CT domain to the corresponding human residues. The resulting humanized yeast ACC-CT (yCT-H9) protein exhibits biochemical and biophysical properties closer to the human CT domain and binding to human specific compounds. We report high resolution crystal structures of yCT-H9 complexed with inhibitors that show a preference for the human CT domain. These structures offer insights that explain the species selectivity of ACC inhibitors and may guide future drug design programs.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/chemistry , Catalytic Domain , Enzyme Inhibitors/chemistry , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/chemistry , Acetyl-CoA Carboxylase/genetics , Animals , Cell Line , Crystallography, X-Ray , Drug Design , Humans , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Species Specificity , Spodoptera , Structural Homology, Protein , Structure-Activity Relationship
8.
J Med Chem ; 54(13): 4536-47, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21650160

ABSTRACT

Utilizing structure-based virtual library design and scoring, a novel chimeric series of phosphodiesterase 10A (PDE10A) inhibitors was discovered by synergizing binding site interactions and ADME properties of two chemotypes. Virtual libraries were docked and scored for potential binding ability, followed by visual inspection to prioritize analogs for parallel and directed synthesis. The process yielded highly potent and selective compounds such as 16. New X-ray cocrystal structures enabled rational design of substituents that resulted in the successful optimization of physical properties to produce in vivo activity and to modulate microsomal clearance and permeability.


Subject(s)
Antipsychotic Agents/chemical synthesis , Phosphodiesterase Inhibitors/chemical synthesis , Phosphoric Diester Hydrolases/metabolism , Schizophrenia/drug therapy , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Antipsychotic Agents/pharmacokinetics , Antipsychotic Agents/pharmacology , Avoidance Learning/drug effects , Binding Sites , Blood-Brain Barrier/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Crystallography, X-Ray , Cyclic GMP/metabolism , Databases, Factual , Drug Design , Humans , In Vitro Techniques , Mice , Mice, Knockout , Microsomes, Liver/metabolism , Models, Molecular , Permeability , Phosphodiesterase Inhibitors/pharmacokinetics , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/genetics , Protein Conformation , Structure-Activity Relationship
9.
Proc Natl Acad Sci U S A ; 107(51): 22002-7, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21135211

ABSTRACT

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes nosocomial infections for which there are limited treatment options. Penicillin-binding protein PBP3, a key therapeutic target, is an essential enzyme responsible for the final steps of peptidoglycan synthesis and is covalently inactivated by ß-lactam antibiotics. Here we disclose the first high resolution cocrystal structures of the P. aeruginosa PBP3 with both novel and marketed ß-lactams. These structures reveal a conformational rearrangement of Tyr532 and Phe533 and a ligand-induced conformational change of Tyr409 and Arg489. The well-known affinity of the monobactam aztreonam for P. aeruginosa PBP3 is due to a distinct hydrophobic aromatic wall composed of Tyr503, Tyr532, and Phe533 interacting with the gem-dimethyl group. The structure of MC-1, a new siderophore-conjugated monocarbam complexed with PBP3 provides molecular insights for lead optimization. Importantly, we have identified a novel conformation that is distinct to the high-molecular-weight class B PBP subfamily, which is identifiable by common features such as a hydrophobic aromatic wall formed by Tyr503, Tyr532, and Phe533 and the structural flexibility of Tyr409 flanked by two glycine residues. This is also the first example of a siderophore-conjugated triazolone-linked monocarbam complexed with any PBP. Energetic analysis of tightly and loosely held computed hydration sites indicates protein desolvation effects contribute significantly to PBP3 binding, and analysis of hydration site energies allows rank ordering of the second-order acylation rate constants. Taken together, these structural, biochemical, and computational studies provide a molecular basis for recognition of P. aeruginosa PBP3 and open avenues for future design of inhibitors of this class of PBPs.


Subject(s)
Anti-Bacterial Agents/chemistry , Models, Molecular , Penicillin-Binding Proteins/chemistry , Pseudomonas aeruginosa/chemistry , Siderophores/chemistry , beta-Lactams/chemistry , Amino Acids, Aromatic , Anti-Bacterial Agents/therapeutic use , Cross Infection/drug therapy , Cross Infection/microbiology , Crystallography, X-Ray , Humans , Protein Structure, Tertiary , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , beta-Lactams/therapeutic use
10.
Bioorg Med Chem Lett ; 20(7): 2383-8, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20219367

ABSTRACT

Screening Pfizer's compound library resulted in the identification of weak acetyl-CoA carboxylase inhibitors, from which were obtained rACC1 CT-domain co-crystal structures. Utilizing HTS hits and structure-based drug discovery, a more rigid inhibitor was designed and led to the discovery of sub-micromolar, spirochromanone non-specific ACC inhibitors. Low nanomolar, non-specific ACC-isozyme inhibitors that exhibited good rat pharmacokinetics were obtained from this chemotype.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Enzyme Inhibitors/pharmacokinetics , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Models, Molecular , Rats , Small Molecule Libraries/pharmacokinetics , Structure-Activity Relationship
11.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 12): 1270-82, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19966413

ABSTRACT

A systematic analysis was undertaken to seek correlations between the integrity, purity and activity of 50S ribosomal subunit preparations from Deinococcus radiodurans and their ability to crystallize. Conditions of fermentation, purification and crystallization were varied in a search for crystals that could reliably supply an industrial X-ray crystallography program for the structure-based design of ribosomal antibiotics. A robust protocol was obtained to routinely obtain crystals that gave diffraction patterns extending to 2.9 A resolution and that were large enough to yield a complete data set from a single crystal. To our knowledge, this is the most systematic study of this challenging area so far undertaken. Ribosome crystallization is a complex multi-factorial problem and although a clear correlation of crystallization with subunit properties was not obtained, the search for key factors that potentiate crystallization has been greatly narrowed and promising areas for further inquiry are suggested.


Subject(s)
Bacterial Proteins/chemistry , Deinococcus/chemistry , Ribosomal Proteins/chemistry , Ribosome Subunits, Large, Bacterial/chemistry , Amino Acid Sequence , Bacterial Proteins/isolation & purification , Cell Fractionation , Crystallography, X-Ray , Deinococcus/genetics , Deinococcus/growth & development , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Protein Structure, Quaternary , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification , Ribosomal Proteins/isolation & purification , Ribosome Subunits, Large, Bacterial/genetics
13.
Anal Biochem ; 395(1): 77-85, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19646947

ABSTRACT

We have developed an affinity purification of the large ribosomal subunit from Deinococcus radiodurans that exploits its association with FLAG-tagged 30S subunits. Thus, capture is indirect so that no modification of the 50S is required and elution is achieved under mild conditions (low magnesium) that disrupt the association, avoiding the addition of competitor ligands or coelution of common contaminants. Efficient purification of highly pure 50S is achieved, and the chromatography simultaneously sorts the 50S into three classes according to their association status (unassociated, loosely associated, or tightly associated), improving homogeneity.


Subject(s)
Deinococcus/ultrastructure , Ribosome Subunits, Large, Bacterial/chemistry , Bacterial Proteins/analysis , Centrifugation, Density Gradient , Chromatography, Affinity , Chromatography, High Pressure Liquid , Cloning, Molecular , Databases, Protein , Gene Expression , Magnesium Chloride , Oligopeptides , Peptide Fragments/analysis , Peptides/genetics , RNA, Bacterial/analysis , RNA, Ribosomal/analysis , Recombinant Fusion Proteins , Ribosomal Proteins/analysis , Ribosomal Proteins/genetics , Ribosome Subunits, Large, Bacterial/metabolism , Ribosome Subunits, Small, Bacterial/genetics , Ribosome Subunits, Small, Bacterial/metabolism , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
14.
J Med Chem ; 52(16): 5188-96, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19630403

ABSTRACT

By utilizing structure-based drug design (SBDD) knowledge, a novel class of phosphodiesterase (PDE) 10A inhibitors was identified. The structure-based drug design efforts identified a unique "selectivity pocket" for PDE10A inhibitors, and interactions within this pocket allowed the design of highly selective and potent PDE10A inhibitors. Further optimization of brain penetration and drug-like properties led to the discovery of 2-[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethyl]-quinoline (PF-2545920). This PDE10A inhibitor is the first reported clinical entry for this mechanism in the treatment of schizophrenia.


Subject(s)
Antipsychotic Agents/chemical synthesis , Models, Molecular , Phosphoric Diester Hydrolases/metabolism , Pyrazoles/chemical synthesis , Quinolines/chemical synthesis , Schizophrenia/drug therapy , Animals , Antipsychotic Agents/pharmacokinetics , Antipsychotic Agents/pharmacology , Avoidance Learning/drug effects , Binding Sites , Brain/metabolism , Crystallography, X-Ray , Dogs , Female , Humans , Hydrogen Bonding , In Vitro Techniques , Macaca fascicularis , Male , Mice , Mice, Knockout , Microsomes, Liver/metabolism , Molecular Structure , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/genetics , Protein Binding , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Quinolines/pharmacokinetics , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 18(11): 3359-63, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18456494

ABSTRACT

Based on a high throughput screening hit, pyrrolopyrimidine inhibitors of the Akt kinase are explored. X-ray co-crystal structures of two lead series results in the understanding of key binding interactions, the design of new lead series, and enhanced potency. The syntheses of these series and their biological activities are described. Spiroindoline 13j is found to have an Akt1 kinase IC(50) of 2.4+/-0.6 nM, Akt cell potency of 50+/-19 nM, and provides 68% inhibition of tumor growth in a mouse xenograft model (50 mg/kg, qd, po).


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Disease Models, Animal , Drug Design , Inhibitory Concentration 50 , Mice , Molecular Conformation , Molecular Structure , Pyrimidines/chemistry , Pyrroles/chemistry , Spiro Compounds/chemistry , Structure-Activity Relationship
16.
Cancer Res ; 68(6): 1935-44, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18339875

ABSTRACT

Cancer cells are characterized by the ability to grow in an anchorage-independent manner. The activity of the nonreceptor tyrosine kinase, focal adhesion kinase (FAK), is thought to contribute to this phenotype. FAK localizes in focal adhesion plaques and has a role as a scaffolding and signaling protein for other adhesion molecules. Recent studies show a strong correlation between increased FAK expression and phosphorylation status and the invasive phenotype of aggressive human tumors. PF-562,271 is a potent, ATP-competitive, reversible inhibitor of FAK and Pyk2 catalytic activity with a IC(50) of 1.5 and 14 nmol/L, respectively. Additionally, PF-562,271 displayed robust inhibition in an inducible cell-based assay measuring phospho-FAK with an IC(50) of 5 nmol/L. PF-562,271 was evaluated against multiple kinases and displays >100x selectivity against a long list of nontarget kinases. PF-562,271 inhibits FAK phosphorylation in vivo in a dose-dependent fashion (calculated EC(50) of 93 ng/mL, total) after p.o. administration to tumor-bearing mice. In vivo inhibition of FAK phosphorylation (>50%) was sustained for >4 hours with a single p.o. dose of 33 mg/kg. Antitumor efficacy and regressions were observed in multiple human s.c. xenograft models. No weight loss, morbidity, or mortality were observed in any in vivo experiment. Tumor growth inhibition was dose and drug exposure dependent. Taken together, these data show that kinase inhibition with an ATP-competitive small molecule inhibitor of FAK decreases the phospho-status in vivo, resulting in robust antitumor activity.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Glioblastoma/drug therapy , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Female , Glioblastoma/enzymology , Glioblastoma/pathology , Humans , Indoles/chemical synthesis , Indoles/chemistry , Mice , Mice, Nude , Models, Chemical , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Xenograft Model Antitumor Assays
17.
J Med Chem ; 50(2): 182-5, 2007 Jan 25.
Article in English | MEDLINE | ID: mdl-17228859

ABSTRACT

A papaverine based pharmacophore model for PDE10A inhibition was generated via SBDD and used to design a library of 4-amino-6,7-dimethoxyquinazolines. From this library emerged an aryl ether pyrrolidyl 6,7-dimethoxyquinazoline series that became the focal point for additional modeling, X-ray, and synthetic efforts toward increasing PDE10A inhibitory potency and selectivity versus PDE3A/B. These efforts culminated in the discovery of 29, a potent and selective brain penetrable inhibitor of PDE10A.


Subject(s)
Phosphodiesterase Inhibitors/chemical synthesis , Phosphoric Diester Hydrolases/metabolism , Pyrrolidines/chemical synthesis , Quinazolines/chemical synthesis , Animals , Corpus Striatum/metabolism , Crystallography, X-Ray , Cyclic GMP/metabolism , Mice , Models, Molecular , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/chemistry , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacology , Structure-Activity Relationship
18.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 62(Pt 11): 1058-60, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17077479

ABSTRACT

Human adipocyte lipid-binding protein (aP2) belongs to a family of intracellular lipid-binding proteins involved in the transport and storage of lipids. Here, the crystal structure of human aP2 with a bound palmitate is described at 1.5 A resolution. Unlike the known crystal structure of murine aP2 in complex with palmitate, this structure shows that the fatty acid is in a folded conformation and that the loop containing Phe57 acts as a lid to regulate ligand binding by excluding solvent exposure to the central binding cavity.


Subject(s)
Fatty Acid-Binding Proteins/chemistry , Fatty Acid-Binding Proteins/genetics , Amino Acid Sequence , Crystallography, X-Ray/methods , DNA, Complementary , Fatty Acid-Binding Proteins/isolation & purification , Humans , Models, Molecular , Molecular Sequence Data , Protein Conformation , Restriction Mapping
19.
J Med Chem ; 48(18): 5728-37, 2005 Sep 08.
Article in English | MEDLINE | ID: mdl-16134941

ABSTRACT

Mimics of the benzimidazolone nucleus found in inhibitors of p38 kinase are proposed, and their theoretical potential as bioisosteres is described. A set of calculated descriptors relevant to the anticipated binding interaction for the fragments 1-methyl-1H-benzotriazole 5, 3-methyl-benzo[d]isoxazole 3, and 3-methyl-[1,2,4]triazolo[4,3-a]pyridine 4, pyridine 1, and 1,3-dimethyl-1,3-dihydro-benzoimidazol-2-one 2 are reported. The design considerations and synthesis of p38 inhibitors based on these H-bond acceptor fragments is detailed. Comparative evaluation of the pyridine-, benzimidazolone-, benzotriazole-, and triazolopyridine-based inhibitors shows the triazoles 20 and 25 to be significantly more potent experimentally than the benzimidazolone after which they were modeled. An X-ray crystal structure of 25 bound to the active site shows that the triazole group serves as the H-bond acceptor but unexpectedly as a dual acceptor, inducing movement of the crossover connection of p38alpha. The computed descriptors for the hydrophobic and pi-pi interaction capacities were the most useful in ranking potency.


Subject(s)
Benzimidazoles/chemistry , Pyridines/chemistry , Triazoles/chemistry , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/chemistry , Benzimidazoles/chemical synthesis , Binding Sites , Crystallography, X-Ray , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Mimicry , Molecular Structure , Protein Binding , Pyridines/chemical synthesis , Quantitative Structure-Activity Relationship , Static Electricity , Triazoles/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...