Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Protoc ; 17(2): 378-401, 2022 02.
Article in English | MEDLINE | ID: mdl-35022622

ABSTRACT

High-content imaging is needed to catalog the variety of cellular phenotypes and multicellular ecosystems present in metazoan tissues. We recently developed iterative bleaching extends multiplexity (IBEX), an iterative immunolabeling and chemical bleaching method that enables multiplexed imaging (>65 parameters) in diverse tissues, including human organs relevant for international consortia efforts. IBEX is compatible with >250 commercially available antibodies and 16 unique fluorophores, and can be easily adopted to different imaging platforms using slides and nonproprietary imaging chambers. The overall protocol consists of iterative cycles of antibody labeling, imaging and chemical bleaching that can be completed at relatively low cost in 2-5 d by biologists with basic laboratory skills. To support widespread adoption, we provide extensive details on tissue processing, curated lists of validated antibodies and tissue-specific panels for multiplex imaging. Furthermore, instructions are included on how to automate the method using competitively priced instruments and reagents. Finally, we present a software solution for image alignment that can be executed by individuals without programming experience using open-source software and freeware. In summary, IBEX is a noncommercial method that can be readily implemented by academic laboratories and scaled to achieve high-content mapping of diverse tissues in support of a Human Reference Atlas or other such applications.


Subject(s)
Ecosystem
2.
J Toxicol Pathol ; 32(4): 233-243, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31719750

ABSTRACT

Brain changes associated with risperidone, a dopamine-2/serotonin-2 receptor antagonist, have been documented in rats and humans, but not in nonhuman primates. This study characterized brain changes associated with risperidone in nonhuman primates. Rhesus monkeys were orally administered risperidone in a dose-escalation paradigm up to a maximum tolerated dose of 0.5 mg/kg/day for 3 weeks, or 3 months followed by a 3-month recovery period. Transient and fully reversible neurological signs consistent with risperidone pharmacology were observed. The results of a magnetic resonance imaging evaluation after 3 months of treatment and at the end of the 3-month recovery period showed no meaningful changes in the brain. There were no risperidone-related brain weight changes or gross findings. Histomorphological evaluation of brain sections stained with hematoxylin and eosin, ionized calcium binding adaptor molecule 1 (Iba1), and luxol fast blue/cresyl violet double staining showed no notable differences between control and risperidone groups. However, evaluation of the brain after glial fibrillary acidic protein (GFAP) immunohistochemical staining revealed increased staining in the cell bodies and processes of astrocytes in the putamen without apparent alterations in numbers or distribution. The increase in GFAP staining was present after 3 weeks and 3 months of treatment, but no increase in staining was observed after the 3-month recovery period, demonstrating the reversibility of this finding. The reversible increase in GFAP expression was likely an adaptive, non-adverse response of astrocytes, associated with the pharmacology of risperidone. These observations are valuable considerations in the nonclinical risk assessment of new drug candidates for psychiatric disorders.

3.
MRS Adv ; 1(42): 2867-2872, 2016.
Article in English | MEDLINE | ID: mdl-28503329

ABSTRACT

Heterogeneous catalytic materials and electrodes are used for (electro)chemical transformations, including those important for energy storage and utilization.1, 2 Due to the heterogeneous nature of these materials, activity measurements with sufficient spatial resolution are needed to obtain structure/activity correlations across the different surface features (exposed facets, step edges, lattice defects, grain boundaries, etc.). These measurements will help lead to an understanding of the underlying reaction mechanisms and enable engineering of more active materials. Because (electro)catalytic surfaces restructure with changing environments,1 it is important to perform measurements in operando. Sub-diffraction fluorescence microscopy is well suited for these requirements because it can operate in solution with resolution down to a few nm. We have applied sub-diffraction fluorescence microscopy to a thin cell containing an electrocatalyst and a solution containing the redox sensitive dye p-aminophenyl fluorescein to characterize reaction at the solid-liquid interface. Our chosen dye switches between a nonfluorescent reduced state and a one-electron oxidized bright state, a process that occurs at the electrode surface. This scheme is used to investigate the activity differences on the surface of polycrystalline Pt, in particular to differentiate reactivity at grain faces and grain boundaries. Ultimately, this method will be extended to study other dye systems and electrode materials.

4.
Phys Chem Chem Phys ; 17(45): 30461-7, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26510016

ABSTRACT

Red-Green-Blue (RGB) dark-field imaging can direct the choice of laser excitation for Raman enhancements on nanostructured plasmonic surfaces. Here we demonstrate that black silicon (b-Si) is a structured surface that has been shown to effectively absorb broad wavelengths of light, but also enables surface enhanced Raman scattering (SERS) when coated with silver (Ag). Coating b-Si with increasing amounts of Ag results in increased dark-field scattering at discrete frequencies associated with localized plasmon resonances. The dark-field scattering was monitored by collecting a far-field image with an inexpensive complementary metal oxide semiconductor (CMOS) camera, similar to what is available on most mobile phones. Color analysis of the RGB pixel intensities correlates with the observed SERS intensity obtained with either green (532 nm) or red (633 nm) laser excitation in SERS experiments. Of particular note, the SERS response at 633 nm showed low spectral variation and a lack of background scattering compared to SERS at 532 nm. The difference in background suggests sub-radiant (dark or Fano resonances) may be associated with the SERS response at 633 nm and a non-resonant character of SERS. These results indicate that b-Si serves a template where Ag nucleates during physical vapor deposition. Increased deposition causes the deposits to coalesce, and at larger Ag thicknesses, bulk scattering is observed. Comparison with a high enhancement Ag SERS substrate further illustrates that a high density of plasmonic junctions, or hotspots, is important for maximizing the SERS response. The randomness of the b-Si substrate and the corresponding Ag nano-features contributes to a broadband spectral response and enhancement in SERS. Metal-coated b-Si is a promising SERS substrate due to its performance and facile fabrication.


Subject(s)
Color , Silicon/chemistry , Silver/chemistry , Particle Size , Spectrum Analysis, Raman , Surface Properties
5.
Proc SPIE Int Soc Opt Eng ; 95542015 Aug 09.
Article in English | MEDLINE | ID: mdl-26412927

ABSTRACT

Enhanced Raman scattering from plasmonic nanostructures associated with surface enhanced (SERS) and tip enhanced (TERS) is seeing a dramatic increase in applications from bioimaging to chemical catalysis. The importance of gap-modes for high sensitivity indicates plasmon coupling between nanostructures plays an important role. However, the observed Raman scattering can change with different geometric arrangements of nanoparticles, excitation wavelengths, and chemical environments; suggesting differences in the local electric field. Our results indicate that molecules adsorbed to the nanostructures are selectively enhanced in the presence of competing molecules. This selective enhancement arises from controlled interactions between nanostructures, such as an isolated nanoparticle and a TERS tip. Complementary experiments suggest that shifts in the vibrational frequency of reporter molecules can be correlated to the electric field. Here we present a strategy that utilizes the controlled formation of coupled plasmonic structures to experimentally measure both the magnitude of the electric fields and the observed Raman scattering.

6.
J Phys Chem B ; 118(28): 8441-8, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24849745

ABSTRACT

4-Cyano-4'-pentylbiphenyl (5CB) is a liquid crystal forming compound with a terminal nitrile group aligned with the long axis of the molecule. Simulations of condensed-phase 5CB were carried out both with and without applied electric fields to provide an understanding of the Stark shift of the terminal nitrile group. A field-induced isotropic-nematic phase transition was observed in the simulations, and the effects of this transition on the distribution of nitrile frequencies were computed. Classical bond displacement correlation functions exhibit a ∼2.3 cm(-1) red-shift of a portion of the main nitrile peak, and this shift was observed only when the fields were large enough to induce orientational ordering of the bulk phase. Distributions of frequencies obtained via cluster-based fits to quantum mechanical energies of nitrile bond deformations exhibit a similar ∼2.7 cm(-1) red-shift. Joint spatial-angular distribution functions indicate that phase-induced anticaging of the nitrile bond is contributing to the change in the nitrile spectrum.

7.
J Phys Chem Lett ; 4(19)2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24273634

ABSTRACT

Electric fields associated with Raman enhancements are typically inferred from changes in the observed scattering intensity. Here we use the vibrational Stark effect from a nitrile reporter to determine the electric field dependent frequency shift of cyanide (CN) on a gold (Au) surface. Electroplated Au surfaces with surface enhanced Raman (SERS) activity exhibit larger Stark shifts near the edge and in areas with large roughness. The Stark shift is observed to correlate with intensity of a co-adsorbed thiophenol molecule. Gap-mode Tip enhanced Raman scattering (TERS), using a Au nanoparticle tip, show dramatic shifts in the CN stretch that correlate to enhancement factors of 1013 in the gap region. The observed peak widths indicate the largest fields are highly localized. Changes in the nitrile stretch frequency provide a direct measurement of the electric fields in SERS and TERS experiments.

8.
Langmuir ; 28(32): 11874-80, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22799521

ABSTRACT

We assess the role of lateral tension in rupturing anionic dipalmitoylphosphatidyserine (DPPS), neutral dipalmitoylphosphatidylcholine (DPPC), and mixed DPPS-DPPC vesicles. Binding of Ca(2+) is known to have a significant impact on the effective size of DPPS lipids and little effect on the size of DPPC lipids in bilayer structures. In the present work we utilized laser transmission spectroscopy (LTS) to assess the effect of Ca(2+)-induced stress on the stability of the DPPS and DPPC vesicles. The high sensitivity and resolution of LTS has permitted the determination of the size and shape of liposomes in solution. The results indicate a critical size after which DPPS single shell vesicles are no longer stable. Our measurements indicate Ca(2+) promotes bilayer fusion up to a maximum diameter of ca. 320 nm. These observations are consistent with a straightforward free-energy-based model of vesicle rupture involving lateral tension between lipids regulated by the binding of Ca(2+). Our results support a critical role of lateral interactions within lipid bilayers for controlling such processes as the formation of supported bilayer membranes and pore formation in vesicle fusion. Using this free energy model we are able to infer a lower bound for the area dilation modulus for DPPS (252 pN/nm) and demonstrate a substantial free energy increase associated with vesicle rupture.


Subject(s)
Calcium/pharmacology , Phosphatidylserines/chemistry , Stress, Mechanical , Unilamellar Liposomes/chemistry , Lipid Bilayers/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...