Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Peptides ; 30(5): 825-31, 2009 May.
Article in English | MEDLINE | ID: mdl-19428757

ABSTRACT

Sedentary endoparasitic nematodes cause extensive damage to a large number of ornamental plants and food crops, with estimated economical losses over 100 billion US$ worldwide. Various efforts have put forth in order to minimize nematode damage, which typically involve the use of nematicides that have high cost and enhanced toxicity to humans and the environment. Additionally, different strategies have been applied in order to develop genetically modified plants with improved nematode resistance. Among the strategies are anti-invasion and migration, feeding-cell attenuation, and anti-nematode feeding. In the present study, we focus on anti-nematode feeding, which involves the evaluation and potential use of the cysteine proteinase (CPs) propeptide as a control alternative. The cysteine proteinase prodomain, isolated from Heterodera glycines (HGCP prodomain), is a natural inhibitory peptide used to transform soybean cotyledons using Agrobacterium rhizogenes. Genetically modified soybean roots expressing the propeptide were detected by Western blot and expression levels were measured by ELISA (around 0.3%). The transgenic roots expressing the propeptide were inoculated with a thousand H. glycines at the second juvenile stage, and a remarkable reduction in the number of females and eggs was observed. A reduction of female length and diameter was also observed after 35 days post-inoculation. Furthermore, the H. glycines mature protein was detected in females fed on soybean transformed root expressing or not expressing the propeptide. The data presented here indicate that the HGCP propeptide can reduce soybean cyst nematode infection and this strategy could be applied in the near future to generate resistant crop cultivars.


Subject(s)
Cysteine Endopeptidases/chemistry , Glycine max/enzymology , Peptides/pharmacology , Plant Roots/enzymology , Animals , Female , Nematoda/physiology , Peptides/chemistry , Plant Roots/parasitology , Plants, Genetically Modified , Recombinant Proteins/chemistry , Glycine max/parasitology
2.
Protein Expr Purif ; 58(1): 61-9, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18171621

ABSTRACT

beta-N-Acetylhexosaminidases (EC 3.2.1.52) belong to an enzyme family that hydrolyzes terminal beta-d-N-glucosamine and beta-d-N-galactosamine residues from oligosaccharides. In this report, we purified a novel beta-N-acetylhexosaminidase (Pcb-NAHA1) from the marine zoanthid Palythoa caribaeorum by applying ammonium sulfate fractionation, affinity chromatography on a chitin column, followed by two rounds of size exclusion chromatography. SDS-PAGE analysis indicated a single band protein of apparent homogeneity with a molecular mass of 25kDa. The purified enzyme preferentially hydrolyzed p-nitrophenyl-2-acetoamide-2-deoxyamide-2-deoxy-beta-d-N-acetylglucosamide (pNP-GlcNAc) and to a lesser extent p-nitrophenyl-2-acetoamide-2-deoxyamide-2-deoxy-beta-d-N-acetylgalactosamide (pNP-GalNAc). Detailed kinetic analysis using pNP-GlcNAc resulted in a specific activity of 57.9 U/mg, a K(m) value of 0.53 mM and a V(max) value of 88.1 micromol/h/mg and k(cat) value of 0.61s(-1). Furthermore, purified Pcb-NAHA1 enzyme activity was decreased by Hg Cl(2) or maltose and stimulated in the presence of Na(2)SeO(4,) BaCl(2), MgCl(2,) chondroitin 6-sulfate, and phenylmethylsulfonylfluoride. The optimum activity of Pcb-NAHA1 was observed at pH 5.0 and elevated temperatures (45-60 degrees C). Direct sequencing of proteolytic fragments generated from Pcb-NAHA1 revealed remarkable similarities to plant chitinases, which belong to family 18, although no chitinase activity was detected with Pcb-NAHA1. We conclude that beta-N-acetylhexosaminidases, representing a type of exochitinolytic activity, and endo-chitinases share common functional domains and/or may have evolved from a common ancestor.


Subject(s)
Anthozoa/enzymology , beta-N-Acetylhexosaminidases/isolation & purification , beta-N-Acetylhexosaminidases/metabolism , Amino Acid Sequence , Animals , Anthozoa/metabolism , Kinetics , Molecular Sequence Data , Sequence Alignment , Substrate Specificity , beta-N-Acetylhexosaminidases/chemistry
3.
Genet Mol Res ; 3(3): 342-55, 2004 Sep 30.
Article in English | MEDLINE | ID: mdl-15614726

ABSTRACT

Cysteine proteinases (CPs) are synthesized as zymogens and converted to mature proteinase forms by proteolytic cleavage and release of their pro domain peptides. A cDNA encoding a papain-like CP, called hgcp-Iv, was isolated from a Heterodera glycines J2 cDNA library, expressed and utilized to assess the ability of its propeptide to inhibit proteinase in its active form. The hgcp-Iv cDNA sequence encodes a polypeptide of 374 amino acids with the same domain organization as other cathepsin L-like CPs, including a hydrophobic signal sequence and a pro domain region. HGCP-Iv, produced in Escherichia coli as a fusion protein with thioredoxin, degrades the synthetic peptide benzyloxycarbonyl-Phe-Arg-7-amido-4-methylcoumarin and is inhibited by E-64, a substrate and inhibitor commonly used for functional characterization of CPs. Recombinant propeptides of HGCP-Iv, expressed in E. coli, presented high inhibitory activity in vitro towards its cognate enzyme and proteinase activity of Meloidogyne incognita females, suggesting its usefulness in inhibiting nematode CPs in biological systems. Cysteine proteinases from other species produced no noticeable activity.


Subject(s)
Cysteine Endopeptidases/genetics , Cysteine Proteinase Inhibitors/genetics , Peptides/genetics , Plant Diseases/parasitology , Tylenchoidea/enzymology , Amino Acid Sequence , Animals , Base Sequence , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/metabolism , DNA, Complementary/genetics , DNA, Helminth/genetics , Female , Molecular Sequence Data , Peptides/metabolism , Polymerase Chain Reaction , Tylenchoidea/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...