Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(9): 4920, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38376949

ABSTRACT

Correction for 'Recent advances in nano-fertilizers: synthesis, crop yield impact, and economic analysis' by Badr-Eddine Channab et al., Nanoscale, 2024, https://doi.org/10.1039/d3nr05012b.

2.
Nanoscale ; 16(9): 4484-4513, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38314867

ABSTRACT

The escalating global demand for food production has predominantly relied on the extensive application of conventional fertilizers (CFs). However, the increased use of CFs has raised concerns regarding environmental risks, including soil and water contamination, especially within cereal-based cropping systems. In response, the agricultural sector has witnessed the emergence of healthier alternatives by utilizing nanotechnology and nano-fertilizers (NFs). These innovative NFs harness the remarkable properties of nanoparticles, ranging in size from 1 to 100 nm, such as nanoclays and zeolites, to enhance nutrient utilization efficiency. Unlike their conventional counterparts, NFs offer many advantages, including variable solubility, consistent and effective performance, controlled release mechanisms, enhanced targeted activity, reduced eco-toxicity, and straightforward and safe delivery and disposal methods. By facilitating rapid and complete plant absorption, NFs effectively conserve nutrients that would otherwise go to waste, mitigating potential environmental harm. Moreover, their superior formulations enable more efficient promotion of sustainable crop growth and production than conventional fertilizers. This review comprehensively examines the global utilization of NFs, emphasizing their immense potential in maintaining environmentally friendly crop output while ensuring agricultural sustainability.


Subject(s)
Fertilizers , Nanoparticles , Fertilizers/analysis , Agriculture/methods , Soil , Nanotechnology
3.
RSC Adv ; 13(45): 31935-31947, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37920194

ABSTRACT

We prepared cellulose microfibrils-g-hydroxyapatite (CMFs-g-HAPN (8%)) in a granular form. We evaluated the ability of these granules to eliminate Pb(ii) and Cu(ii) ions from aqueous solution in dynamic mode using a fixed-bed adsorption column. Several operating parameters (inlet ion concentration, feed flow rate, bed height) were optimized using response surface methodology (RSM) based on a Doehlert design. Based on ANOVA and regression analyses, adsorption was found to follow the quadratic polynomial model with p < 0.005, R2 = 0.976, and R2 = 0.990, respectively, for Pb(ii) and Cu(ii) ions. Moreover, three kinetic models (Adams-Bohart, Thomas, Yoon-Nelson) were applied to fit our experimental data. The Thomas model and Yoon-Nelson model represented appropriately the whole breakthrough curves. The Adams-Bohart model was suitable only for fitting the initial part of the same curves. Our adsorbent exhibited high selectivity towards Pb(ii) over Cu(ii) ions in the binary metal system, with a maximum predicted adsorption capacity of 59.59 ± 3.37 and 35.66 ± 1.34 mg g-1, respectively. Under optimal conditions, multi-cycle sorption-desorption experiments indicated that the prepared adsorbent could be regenerated and reused up to four successive cycles. The prepared CMFs-g-HAPN was an efficient and effective reusable adsorbent for removal of heavy metals from aqueous systems, and could be a suitable candidate for wastewater treatment on a large scale.

4.
RSC Adv ; 13(29): 20150-20163, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37409044

ABSTRACT

A facile chemical procedure was utilized to produce an effective peroxy-monosulfate (PMS) activator, namely ZnCo2O4/alginate. To enhance the degradation efficiency of Rhodamine B (RhB), a novel response surface methodology (RSM) based on the Box-Behnken Design (BBD) method was employed. Physical and chemical properties of each catalyst (ZnCo2O4 and ZnCo2O4/alginate) were characterized using several techniques, such as FTIR, TGA, XRD, SEM, and TEM. By employing BBD-RSM with a quadratic statistical model and ANOVA analysis, the optimal conditions for RhB decomposition were mathematically determined, based on four parameters including catalyst dose, PMS dose, RhB concentration, and reaction time. The optimal conditions were achieved at a PMS dose of 1 g l-1, a catalyst dose of 1 g l-1, a dye concentration of 25 mg l-1, and a time of 40 min, with a RhB decomposition efficacy of 98%. The ZnCo2O4/alginate catalyst displayed remarkable stability and reusability, as demonstrated by recycling tests. Additionally, quenching tests confirmed that SO4˙-/OH˙ radicals played a crucial role in the RhB decomposition process.

5.
ACS Omega ; 7(32): 28076-28092, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990427

ABSTRACT

In the present research, we describe a novel approach for in situ synthesis of cellulose microfibrils-grafted-hydroxyapatite (CMFs-g-HAPN (8%)) as an adsorbent using phosphate rock and date palm petiole wood as alternative and natural Moroccan resources. The synthesized CMFs-g-HAPN (8%) was extensively characterized by several instrumental techniques like thermogravimetry analysis, Fourier transform infrared spectroscopy, X-ray diffraction, 31P nuclear magnetic resonance, scanning electron microscopy, and Brunauer-Emmett-Teller analysis. The developed adsorbent was used to remove Pb(II) and Cu(II) from aqueous solutions. The influences of different adsorption parameters such as contact time, initial metal concentration, and amount of adsorbent were also investigated thoroughly using response surface methodology in order to optimize the batch adsorption process. The results confirmed that the adsorption process follows a polynomial quadratic model as high regression parameters were obtained (R 2 value = 99.8% for Pb(II) and R 2 value = 92.6% for Cu(II)). According to kinetics and isotherm modeling, the adsorption process of both studied ions onto CMFs-g-HAPN (8%) followed the pseudo-second-order model, and the equilibrium data at 25 °C were better fitted by the Langmuir model. The maximum adsorption capacities of the CMFs-g-HAPN (8%) adsorbent toward Pb(II) and Cu(II) are 143.80 and 83.05 mg/g, respectively. Moreover, the experiments of multicycle adsorption/desorption indicated that the CMFs-g-HAPN (8%) adsorbent could be regenerated and reused up to three cycles. The high adsorption capacities of both studied metals and regeneration performances of the CMFs-g-HAPN (8%) suggest its applicability as a competitive adsorbent for large-scale utilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...