Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Curr Stem Cell Res Ther ; 14(7): 607-616, 2019.
Article in English | MEDLINE | ID: mdl-31271121

ABSTRACT

BACKGROUND: Regenerative medicine is a growing branch of medicine aimed to treat damaged or lost tissues, to promote tissue formation and to restore both aesthetics and function. In the last years, several scientific articles have been focused on the regenerative procedures aimed to increase the survival rate of compromised teeth; the most effective approaches have been based on molecularbased and on cellular-based protocols; however, to date, both these techniques have not been carefully analysed and discussed, to know in details the advantages of each of them. METHODS: A literature search was undertaken on three electronic scientific databases: Medline via PubMed, EMBASE and Google Scholar. Authors aimed to select such articles published in the time span from January 1961 until December 2017. The authors screened the titles and the abstracts including the following keywords combinations: "Pulp AND Therapy", "Regenerative AND Endodontic", and "Endodontics AND Tissue engineering". After the exclusion of any not related articles, the full text of such papers related to the topics was included in this review. RESULTS: Following the removal of duplicate articles and of other types of publications (such as erratum and corrigendum), 621 articles were selected to be included and analysed in our topical review. The articles were analysed into the following sections: cellular-based approaches for dental regeneration, molecular-based and combined cellular/molecular-based approaches for dental regeneration, and translational applications of regenerative dentistry. CONCLUSION: This topical review has been focused on the main, the most promising and the most innovative strategies for achieving the regeneration of dental pulp or dental tissues. The main and surprising "take-home message" is related to the great interest towards the dental-derived stem cells, characterized by a high angiogenic and neurogenic commitment. Future challenges will be focused on the development of biological-friendly regenerative strategies: the new approaches should overcome the current biological limitations, to promote the combined cellular and molecular-based treatments, able to ensure predictable clinical evidence, with the achievement of the regeneration/repairing of the compromised dental pulp and of the entire tooth structure.


Subject(s)
Dental Pulp/cytology , Dentistry , Regeneration , Stem Cell Transplantation , Stem Cells/cytology , Tissue Engineering/methods , Humans
2.
Dent J (Basel) ; 6(4)2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30551556

ABSTRACT

Tissue engineering is based on the interaction between stem cells, biomaterials and factors delivered in biological niches. Oral tissues have been found to be rich in stem cells from different sources: Stem cells from oral cavity are easily harvestable and have shown a great plasticity towards the main lineages, specifically towards bone tissues. Dental pulp stem cells (DPSCs) are the most investigated mesenchymal stem cells (MSCs) from dental tissues, however, the oral cavity hosts several other stem cell lineages that have also been reported to be a good alternative in bone tissue engineering. In particular, the newly discovered population of mesenchymal stem cells derived from human periapical inflamed cysts (hPCy-MSCs) have showed very promising properties, including high plasticity toward bone, vascular and neural phenotypes. In this topical review, the authors described the main oral-derived stem cell populations, their most interesting characteristics and their ability towards osteogenic lineage. This review has also investigated the main clinical procedures, reported in the recent literature, involving oral derived-MSCs and biomaterials to get better bone regeneration in dental procedures. The numerous populations of mesenchymal stem cells isolated from oral tissues (DPSCs, SHEDs, PDLSCs, DFSCs, SCAPs, hPCy-MSCs) retain proliferation ability and multipotency; these features are exploited for clinical purposes, including regeneration of injured tissues and local immunomodulation; we reported on the last studies on the proper use of such MSCs within a biological niche and the proper way to storage them for future clinical use.

3.
Front Physiol ; 9: 1685, 2018.
Article in English | MEDLINE | ID: mdl-30534086

ABSTRACT

Dental pulp is known to be an accessible and important source of multipotent mesenchymal progenitor cells termed dental pulp stem cells (DPSCs). DPSCs can differentiate into odontoblast-like cells and maintain pulp homeostasis by the formation of new dentin which protects the underlying pulp. DPSCs similar to other mesenchymal stem cells (MSCs) reside in a niche, a complex microenvironment consisting of an extracellular matrix, other local cell types and biochemical stimuli that influence the decision between stem cell (SC) self-renewal and differentiation. In addition to biochemical factors, mechanical factors are increasingly recognized as key regulators in DPSC behavior and function. Thus, microenvironments can significantly influence the role and differentiation of DPSCs through a combination of factors which are biochemical, biomechanical and biophysical in nature. Under in vitro conditions, it has been shown that DPSCs are sensitive to different types of force, such as uniaxial mechanical stretch, cyclic tensile strain, pulsating fluid flow, low-intensity pulsed ultrasound as well as being responsive to biomechanical cues presented in the form of micro- and nano-scale surface topographies. To understand how DPSCs sense and respond to the mechanics of their microenvironments, it is essential to determine how these cells convert mechanical and physical stimuli into function, including lineage specification. This review therefore covers some aspects of DPSC mechanoresponsivity with an emphasis on the factors that influence their behavior. An in-depth understanding of the physical environment that influence DPSC fate is necessary to improve the outcome of their therapeutic application for tissue regeneration.

4.
J Clin Med ; 7(10)2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30326618

ABSTRACT

Mesenchymal stem cells (MSCs) are well known for their great potential in clinical applications. In fact, MSCs can differentiate into several cell lineages and show paracrine behavior by releasing endogenous factors that stimulate tissue repair and modulate local immune response. Each MSC type is affected by specific biobanking issues-technical issues as well as regulatory and ethical concerns-thus making it quite tricky to safely and commonly use MSC banking for swift regenerative applications. Extracellular vesicles (EVs) include a group of 150⁻1000 nm vesicles that are released by budding from the plasma membrane into biological fluids and/or in the culture medium from varied and heterogenic cell types. EVs consist of various vesicle types that are defined with different nomenclature such as exosomes, shedding vesicles, nanoparticles, microvesicles and apoptotic bodies. Ectosomes, micro- and nanoparticles generally refer to the direct release of single vesicles from the plasma membrane. While many studies describe exosomes as deriving from multivesicular bodies, solid evidence about the origin of EVs is often lacking. Extracellular vesicles represent an important portion of the cell secretome. Their numerous properties can be used for diagnostic, prognostic, and therapeutic uses, so EVs are considered to be innovative and smart theranostic tools. The aim of this review is to investigate the usefulness of exosomes as carriers of the whole information panel characterizing the use of MSCs in regenerative medicine. Our purpose is to make a step forward in the development of the NANOmetric BIO-banked MSC-derived Exosome (NANOBIOME).

5.
J Agric Food Chem ; 66(30): 8142-8149, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30011990

ABSTRACT

Ruminants' milk contains δ-valerobetaine originating from rumen through the transformation of dietary Nε-trimethyllysine. Among ruminant's milk, the occurrence of δ-valerobetaine, along with carnitine precursors and metabolites, has not been investigated in buffalo milk, the second most worldwide consumed milk, well-known for its nutritional value. HPLC-ESI-MS/MS analyses of bulk milk revealed that the Italian Mediterranean buffalo milk contains δ-valerobetaine at levels higher than those in bovine milk. Importantly, we detected also γ-butyrobetaine, the l-carnitine precursor, never described so far in any milk. Of interest, buffalo milk shows higher levels of acetylcarnitine, propionylcarnitine, butyrylcarnitine, isobutyrylcarnitine, and 3-methylbutyrylcarnitine (isovalerylcarnitine) than cow milk. Moreover, buffalo milk shows isobutyrylcarnitine and butyrylcarnitine at a 1-to-1 molar ratio, while in cow's milk this ratio is 5 to 1. Results indicate a peculiar short-chain acylcarnitine profile characterizing buffalo milk, widening the current knowledge about its composition and nutritional value.


Subject(s)
Carnitine/analogs & derivatives , Carnitine/analysis , Milk/chemistry , Animals , Buffaloes , Carnitine/chemistry , Cattle , Female , Tandem Mass Spectrometry
6.
Front Cell Dev Biol ; 5: 103, 2017.
Article in English | MEDLINE | ID: mdl-29259970

ABSTRACT

Mesenchymal stem cells (MSCs) are attracting growing interest by the scientific community due to their huge regenerative potential. Thus, the plasticity of MSCs strongly suggests the utilization of these cells for regenerative medicine applications. The main issue about the clinical use of MSCs is related to the complex way to obtain them from healthy tissues; this topic has encouraged scientists to search for novel and more advantageous sources of these cells in easily accessible tissues. The oral cavity hosts several cell populations expressing mesenchymal stem cell like-features, furthermore, the access to oral and dental tissues is simple and isolation of cells is very efficient. Thus, oral-derived stem cells are highly attractive for clinical purposes. In this context, human periapical cyst mesenchymal stem cells (hPCy-MSCs) exhibit characteristics similar to other dental-derived MSCs, including their extensive proliferative potential, cell surface marker profile and the ability to differentiate into various cell types such as osteoblasts, adipocytes and neurons. Importantly, hPCy-MSCs are easily collected from the surgically removed periapical cysts; this reusing of biological waste guarantees a smart source of stem cells without any impact on the surrounding healthy tissues. In this review, we report the most interesting research topics related to hPCy-MSCs with a newsworthy discussion about the future insights. This newly discovered cell population exhibits interesting and valuable potentialities that could be of high impact in the future regenerative medicine applications.

7.
Int J Mol Sci ; 18(10)2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29027958

ABSTRACT

Bone regeneration in craniomaxillofacial surgery represents an issue that involves both surgical and aesthetic aspects. The most recent studies on bone tissue engineering involving adipose-derived stromal/stem cells (ASCs) have clearly demonstrated that such cells can play a crucial role in the treatment of craniomaxillofacial defects, given their strong commitment towards the osteogenic phenotype. A deeper knowledge of the molecular mechanisms underlying ASCs is crucial for a correct understanding of the potentialities of ASCs-based therapies in the most complex maxillofacial applications. In this topical review, we analyzed the molecular mechanisms of ASCs related to their support toward angiogenesis and osteogenesis, during bone regeneration. Moreover, we analyzed both case reports and clinical trials reporting the most promising clinical applications of ASCs in the treatment of craniomaxillofacial defects. Our study aimed to report the main molecular and clinical features shown by ASCs, used as a therapeutic support in bone engineering, as compared to the use of conventional autologous and allogeneic bone grafts.


Subject(s)
Adipose Tissue/cytology , Bone Regeneration , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Animals , Clinical Trials as Topic , Craniofacial Abnormalities/surgery , Humans , Osteogenesis , Proteome , Tissue Engineering , Tissue Scaffolds , Transcriptome
8.
J Bone Jt Infect ; 2(2): 84-89, 2017.
Article in English | MEDLINE | ID: mdl-28529868

ABSTRACT

Background: Dental implant failure can recognize several causes and many of them are quite preventable with the right knowledge of some clinical critical factors. Aim of this paper is to investigate about the histological aspects related to dental implants failure in such cases related to cement excess, how such histological picture can increase the risk of bacterial infections and how the different type of cement can interact with osteoblasts in-vitro. Methods: We randomly selected 5 patients with a diagnosis of dental implant failure requiring to be surgically removed: in all patients was observed an excess of dental cement around the failed implants. Histological investigations were performed of the perimplant bone. Cell culture of purchased human Osteoblasts was performed in order to evaluate cell proliferation and cell morphology at 3 time points among 3 cement types and a control surface. Results: Dental cement has been related to a pathognomonic histological picture with a foreign body reaction and many areas with black particles inside macrophage cells. Finally, cell culture on different dental cements resulted in a lower osteoblasts survival rate. Conclusions: It is appropriate that the dentist puts a small amount of dental cement in the prosthetic crown, so to avoid the clinical alterations related to the excess of cement.

9.
J Biomater Sci Polym Ed ; 28(8): 730-748, 2017 06.
Article in English | MEDLINE | ID: mdl-28285576

ABSTRACT

Dental pulp tissue represents a source of mesenchymal stem cells that have a strong differentiation potential towards the osteogenic lineage. The objective of the current study was to examine in vitro osteogenic induction of dental pulp stem cells (DPSCs) cultured on hydrogel scaffolds derived from decellularized bone extracellular matrix (bECM) compared to collagen type I (Col-I), the major component of bone matrix. DPSCs in combination with bECM hydrogels were cultured under three different conditions: basal medium, osteogenic medium and medium supplemented with growth factors (GFs) and cell growth, mineral deposition, gene and protein expression were investigated. The DPSCs/bECM hydrogel constructs cultured in basal medium showed that cells were viable after three weeks and that the expression of runt-related transcription factor 2 (RUNX-2) and bone sialoprotein (BSP) were significantly upregulated in the absence of extra osteogenic inducers compared to Col-I hydrogel scaffolds. In addition, the protein expression levels of BSP and osteocalcin were higher on bECM with respect to Col-I hydrogel scaffolds. Furthermore, DPSCs/bECM hydrogels cultured with osteogenic or GFs supplemented medium displayed a higher upregulation of the osteo-specific markers compared to Col-I hydrogels in identical media. Collectively, our results demonstrate that bECM hydrogels might be considered as suitable scaffolds to support osteogenic differentiation of DPSCs.


Subject(s)
Bone Regeneration , Bone and Bones/cytology , Bone and Bones/physiology , Dental Pulp/cytology , Extracellular Matrix/metabolism , Stem Cells/cytology , Animals , Cattle , Cell Adhesion , Cell Differentiation , Cell Proliferation , Gene Expression Regulation , Humans , Osteogenesis
10.
Medicine (Baltimore) ; 95(49): e5589, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27930577

ABSTRACT

Electronic cigarette (e-cigarette) simulates the act of tobacco smoking by vaporizing a mixture of propylene glycol, nicotine, and flavoring agents. e-cigarette has been proposed as a product able to aid to stop smoking. The aim of the study is to verify the clinical variations of periodontal health induced by e-cigarettes use and, moreover, to investigate about the awareness of the e-smokers about their health variations and about their hypothetical need to turn back to smoke combustible cigarettes.This clinical observational pilot study involved 110 out of 350 smokers, who switched to e-cigarette. Patients were subjected to oral examinations. A questionnaire to self-assess the variations of some parameters of general health, and to self-assess the need to smoke combustible cigarettes, was distributed to such subjects involved in the study.At the end of the study, we registered a progressive improvement in the periodontal indexes, as well as in the general health perception. Finally, many patients reported an interesting reduction in the need to smoke.In the light of this pilot study, the e-cigarette can be considered as a valuable alternative to tobacco cigarettes, but with a positive impact on periodontal and general health status.


Subject(s)
Electronic Nicotine Delivery Systems/adverse effects , Health Status , Oral Health , Smoking/adverse effects , Adult , Electronic Nicotine Delivery Systems/statistics & numerical data , Humans , Italy , Male , Nicotine/adverse effects , Nicotine/metabolism , Pilot Projects , Quality Improvement , Risk Assessment , Smoking/epidemiology , Surveys and Questionnaires
11.
Sci Rep ; 6: 36042, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27786308

ABSTRACT

There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin-Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry.


Subject(s)
Antineoplastic Agents/chemistry , Antioxidants/chemistry , Polyphenols/chemistry , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Electron Transport Chain Complex Proteins/metabolism , Flavonoids/analysis , Flavonoids/isolation & purification , Food Industry , Humans , Mass Spectrometry , Microscopy, Confocal , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Pilot Projects , Polyphenols/pharmacology , Reactive Oxygen Species/metabolism , Wastewater/chemistry
12.
Stem Cells Int ; 2016: 7230987, 2016.
Article in English | MEDLINE | ID: mdl-27774106

ABSTRACT

Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs). The perspective role of dental pulp stem cells (DPSCs) in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL) contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS) in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1%) was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H2O2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use.

13.
Ann Stomatol (Roma) ; 7(1-2): 16-23, 2016.
Article in English | MEDLINE | ID: mdl-27486507

ABSTRACT

AIM: Hydroxyapatite (PA) has a chemical composition and physical structure very similar to natural bone and therefore it has been considered to be the ideal biomaterial able to ensure a biomimetic scaffold to use in bone tissue engineering. The aim of this study is to clinically test hydroxyapatite used as osteoconductive biomaterial in the treatment of periodontal bone defects. Clinical and radiological evaluations were conducted at 6, 12 and 18 months after the surgery. MATERIALS AND METHODS: Forty patients with 2- and 3-wall intrabony pockets were enrolled in this study. PPD, CAL, radiographic depth (RD) and angular defects were preoperatively measured. After surgery, patients were re-evaluated every 6 months for 18 months. Statistical analyses were also performed to investigate any differences between preoperative and postoperative measurements. RESULTS: Paired t-test samples conducted on the data obtained at baseline and 18 months after, showed significant (p<0.01) differences in each measurement performed. The role of preoperative RD was demonstrated to be a significant key factor (p<0.01). A relevant correlation between preoperative PPD and CAL gain was also found. CONCLUSIONS: Within the limitations of this study, the absence of anatomical variables, except the morphology of the bone defect, emphasizes the importance of the proper surgical approach and the graft material used.

14.
Stem Cell Rev Rep ; 12(5): 592-603, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27406247

ABSTRACT

Recent studies have identified a new human dental derived progenitor cell population with multi-lineage differentiation potential referred to as human periapical cyst mesenchymal stem cells (hPCy-MSCs). In the present study, we compared two subpopulations of hPCy-MSCs characterised by the low or high expression of CD146 to establish whether this expression can regulate their stem cell properties. Using flow cytometry, we evaluated the stem cell marker profile of hPCy-MSCs during passaging. Furthermore, CD146Low and CD146High cells were sorted by magnetic beads and subsequently both cell populations were evaluated for differences in their proliferation, self-renewal, stem cell surface markers, stemness genes expression and osteogenic differentiation potential.We found that hPCy-MSCs possessed a stable expression of several mesenchymal stem cell surface markers, whereas CD146 expression declined during passaging.In addition, sorted CD146Low cells proliferated significantly faster, displayed higher colony-forming unit-fibroblast capacity and showed higher expression of Klf4 when compared to the CD146High subset. Significantly, the osteogenic potential of hPCy-MSCs was greater in the CD146Low than in CD146High population. These results demonstrate that CD146 is spontaneously downregulated with passaging at both mRNA and protein levels and that the high expression of CD146 reduces the proliferative, self-renewal and osteogenic differentiation potential of hPCy-MSCs. In conclusion, our study demonstrates that changes in the expression of CD146 can influence the stem cell properties of hPCy-MSCs.


Subject(s)
Mesenchymal Stem Cells/metabolism , Radicular Cyst/metabolism , Stem Cells/metabolism , Adult , Biomarkers/metabolism , CD146 Antigen/metabolism , Cell Differentiation/physiology , Cell Lineage/physiology , Cell Proliferation/physiology , Fibroblasts/metabolism , Flow Cytometry/methods , Gene Expression/physiology , Humans , Kruppel-Like Factor 4 , Osteogenesis/physiology
15.
J Craniofac Surg ; 27(5): 1197-201, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27300457

ABSTRACT

Synovial chondromatosis (SC) is an uncommon disease characterized by a benign nodular cartilaginous proliferation arising from the joint synovium, bursae, or tendon sheaths. Although the temporomandibular joint is rarely affected by neoplastic lesions, SC is the most common neoplastic lesion of this joint. The treatment of this disease consists in the extraoral surgery with a wide removal of the lesion; in this study, the authors described a more conservative intraoral surgical approach. Patient with SC of temporomandibular joint typically refer a limitation in the mouth opening, together with a persistent not physiological mandibular protrusion and an appearance of a neoformation located at the right preauricular region: the authors reported 1 scholar patient. After biopsy of the neoformation, confirming the synovial chondromatosis, the patient underwent thus to the surgical excision of the tumor, via authors' conservative transoral approach, to facilitate the enucleation of the neoformation. The mass fully involved the pterygo-maxillary fossa with involvement of the parotid lodge and of the right TMJ: this multifocal extension suggested for a trans-oral surgical procedure, in the light of the suspicion of a possible malignant nature of the neoplasm. Our intraoral conservative approach to surgery is aimed to reduce the presence of unaesthetic scars in preauricular and facial regions, with surgical results undoubtedly comparable to the traditional surgical techniques much more aggressive. Our technique could be a valid, alternative, and safe approach to treat this rare and complex kind of oncological disease.


Subject(s)
Chondromatosis, Synovial/surgery , Oral Surgical Procedures/methods , Temporomandibular Joint Disorders/surgery , Temporomandibular Joint/surgery , Biopsy , Chondromatosis, Synovial/diagnosis , Female , Humans , Magnetic Resonance Imaging , Mandibular Condyle/pathology , Middle Aged , Synovial Membrane/pathology , Temporal Bone/pathology , Temporomandibular Joint/diagnostic imaging , Temporomandibular Joint Disorders/diagnosis , Tomography, X-Ray Computed
16.
Int J Immunopathol Pharmacol ; 29(4): 778-783, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27106276

ABSTRACT

INTRODUCTION: Studies on biomaterials involve assays aimed to assess the interactions between the biomaterial and the cells seeded on its surface. However, the morphology of biomaterials is heterogeneous and it could be tricky to standardize the results among different biomaterials and the classic plastic plates. In this light, we decided to create, by means of computer-aided design (CAD) technology, a standardized sample model, with equal shape and sizes, able to fit into a classic shape of a 96-wells tissue culture plate (TCP). METHODS: The design of this sample consists of a hole in the top in order to allow the injected cells to settle without them being able to slip from the sides of the sample to the bottom of the TCP wells. This CAD project is made using the software Pro-Engineer. The sample will totally fill the wells of the 96-well TCP. Dental pulp stem cells have been used to assess the ability of the different sample to support and promote the cell proliferation. RESULTS: Twelve titanium, 12 gold-palladium, and 12 zirconium oxide customized samples were designed by means of the software cam powermill, by importing the .stl file created in Pro-Engineer software. The proliferation rate of the tested scaffolds showed to be similar to the control in the group with the customized shape. CONCLUSION: We think that our method can be useful to test different types of scaffolds when a greater accuracy of the measurements is desirable in order to verify the cell behavior of these scaffolds. Our innovative method can improve the standardization process in the evaluation of cell behavior on different biomaterials to open the way to more reliable tests on biomatrices functionalized with drugs or growth factors applied to the future regenerative medicine.


Subject(s)
Biocompatible Materials/pharmacology , Regenerative Medicine/methods , Tissue Scaffolds/chemistry , Adult , Cell Proliferation/drug effects , Cells, Cultured , Computer-Aided Design , Dental Pulp/drug effects , Humans , Materials Testing/methods , Palladium/pharmacology , Stem Cells/drug effects , Titanium/pharmacology , Zirconium/pharmacology
17.
PLoS One ; 11(2): e0148225, 2016.
Article in English | MEDLINE | ID: mdl-26882351

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the level of odontogenic differentiation of dental pulp stem cells (DPSCs) on hydrogel scaffolds derived from bone extracellular matrix (bECM) in comparison to those seeded on collagen I (Col-I), one of the main components of dental pulp ECM. METHODS: DPSCs isolated from human third molars were characterized for surface marker expression and odontogenic potential prior to seeding into bECM or Col-I hydrogel scaffolds. The cells were then seeded onto bECM and Col-I hydrogel scaffolds and cultured under basal conditions or with odontogenic and growth factor (GF) supplements. DPSCs cultivated on tissue culture polystyrene (TCPS) with and without supplements were used as controls. Gene expression of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1) and matrix extracellular phosphoglycoprotein (MEPE) was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and mineral deposition was observed by Von Kossa staining. RESULTS: When DPSCs were cultured on bECM hydrogels, the mRNA expression levels of DSPP, DMP-1 and MEPE genes were significantly upregulated with respect to those cultured on Col-I scaffolds or TCPS in the absence of extra odontogenic inducers. In addition, more mineral deposition was observed on bECM hydrogel scaffolds as demonstrated by Von Kossa staining. Moreover, DSPP, DMP-1 and MEPE mRNA expressions of DPSCs cultured on bECM hydrogels were further upregulated by the addition of GFs or osteo/odontogenic medium compared to Col-I treated cells in the same culture conditions. SIGNIFICANCE: These results demonstrate the potential of the bECM hydrogel scaffolds to stimulate odontogenic differentiation of DPSCs.


Subject(s)
Bone Matrix/chemistry , Cell Differentiation/drug effects , Dental Pulp/drug effects , Hydrogels/chemistry , Stem Cells/drug effects , Tissue Scaffolds , Biomarkers/metabolism , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Collagen Type I/chemistry , Dental Pulp/cytology , Dental Pulp/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Gene Expression/drug effects , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Hydrogels/pharmacology , Intercellular Signaling Peptides and Proteins/pharmacology , Molar , Odontogenesis/drug effects , Odontogenesis/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Polystyrenes/chemistry , Primary Cell Culture , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sialoglycoproteins/genetics , Sialoglycoproteins/metabolism , Stem Cells/cytology , Stem Cells/metabolism
18.
Int J Immunopathol Pharmacol ; 29(1): 3-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26612837

ABSTRACT

Tissue engineering applications need a continuous development of new biomaterials able to generate an ideal cell-extracellular matrix interaction. The stem cell fate is regulated by several factors, such as growth factors or transcription factors. The most recent literature has reported several publications able to demonstrate that environmental factors also contribute to the regulation of stem cell behavior, leading to the opinion that the environment plays the major role in the cell differentiation.The interaction between mesenchymal stem cells (MSCs) and extracellular environment has been widely described, and it has a crucial role in regulating the cell phenotype. In our laboratory (Tecnologica Research Institute, Crotone, Italy), we have recently studied how several physical factors influence the distribution and the morphology of MSCs isolated from dental pulp, and how they are able to regulate stem cell differentiation. Mechanical and geometrical factors are only a small part of the environmental factors able to influence stem cell behavior, however, this influence should be properly known: in fact, this assumption must be clearly considered during those studies involving MSCs; furthermore, these interactions should be considered as an important bias that involves an high number of studies on the MSCs, since in worldwide laboratories the scientists mostly use tissue culture plates for their experiments.


Subject(s)
Extracellular Matrix/physiology , Mesenchymal Stem Cells/physiology , Humans , Tissue Culture Techniques , Tissue Engineering
19.
J Cancer ; 6(10): 976-83, 2015.
Article in English | MEDLINE | ID: mdl-26366210

ABSTRACT

INTRODUCTION: Bioimpedance is a measure of the electrical properties of biological tissues. In the last two decades bioimpedance has been successfully introduced in clinical diagnosis of cancer. It has been demonstrated that tumoral tissues often show lower bioimpedance values than healthy tissues. The aim of this work is to assess the bioimpedentiometric differences between healthy and Oral Lichen Planus (OLP) affected oral mucosa, taking attention to the erosive form which may represent a potential pre-cancerous condition. METHODS: 52 patients affected by OLP were recruited for bioimpedance examination of oral mucosa. Four electrical properties, resistance (R), reactance (Xc), phase angle (θ) and impedance (Z) of the tongue and of the intraoral mucosa, were measured. RESULTS: We observed a significant increase of Z and a significant decrease of θ values in correspondence of OLP lesions compared to healthy oral mucosa, and a marked decrease of Z values in correspondence of erosive OLP lesions. CONCLUSIONS: These results provide evidence of the usefulness of bioimpedance assay for the characterization of healthy and clinically OLP affected mucosa. Bioimpedance is a valid aid in the early detection and clinical monitoring of the suspicious lesions which could lead to a potentially malignant evolution. The present research article is a valuable addition to the scientific literature of cancer prevention, and our findings can be considered extremely encouraging as they represent the initial step for a more wide clinical study for better define the different cut-off values in the different precancerous conditions occurring in the oral mucosa.

20.
Ann Stomatol (Roma) ; 6(2): 35-42, 2015.
Article in English | MEDLINE | ID: mdl-26330902

ABSTRACT

INTRODUCTION: A good control of bacterial plaque is an essential factor for the success of periodontal therapy, therefore it is the main objective that the clinician together with the patient must get to have a healthy periodontium. The plaque control with mouthwashes is the most important home therapy as it helps to reduce the formation of plaque between the mechanical removal with a toothbrush. AIM: Authors analyzed the clinical data from a trial carried out with 3 different mouthwashes containing 0.2% Chlorhexidine (CHX). In addition, the ADS (Anti Discoloration System - Curaden Healthcare) was tested in comparison with the other mouthwashes without this system. MATERIALS AND METHODS: We tested antiplaque activity showed by 3 of the most commercialized mouthwashes, moreover, we tested the ability in reducing the dental staining related to the oral assumption of Chlorhexidine. DISCUSSION AND CONCLUSION: Our results demonstrated the clinical efficacy of the 3 mouthwashes with CHX. Particularly performing was the anti discoloration system (Curaden Healthcare), with a clinical detection of dental stainings significantly less than the others tested. This study demonstrated the clinical efficacy of ADS system in the reduction of tooth staining, without a loss of antiplaque activity with respect to the competing mouthwashes containing CHX.

SELECTION OF CITATIONS
SEARCH DETAIL
...