Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794488

ABSTRACT

Salinity reduces crop yields and quality, causing global economic losses. Zinc oxide nanoparticles (ZnO-NPs) improve plant physiological and metabolic processes and abiotic stress resistance. This study examined the effects of foliar ZnO-NPs at 75 and 150 mg/L on tomato Kecskeméti 549 plants to alleviate salt stress caused by 150 mM NaCl. The precipitation procedure produced ZnO-NPs that were characterized using UV-VIS, TEM, STEM, DLS, EDAX, Zeta potential, and FTIR. The study assessed TPCs, TFCs, total hydrolyzable sugars, total free amino acids, protein, proline, H2O2, and MDA along with plant height, stem width, leaf area, and SPAD values. The polyphenolic burden was also measured by HPLC. With salt stress, plant growth and chlorophyll content decreased significantly. The growth and development of tomato plants changed by applying the ZnO-NPs. Dosages of ZnO-NPs had a significant effect across treatments. ZnO-NPs also increased chlorophyll, reduced stress markers, and released phenolic chemicals and proteins in the leaves of tomatoes. ZnO-NPs reduce salt stress by promoting the uptake of minerals. ZnO-NPs had beneficial effects on tomato plants when subjected to salt stress, making them an alternate technique to boost resilience in saline soils or low-quality irrigation water. This study examined how foliar application of chemically synthesized ZnO-NPs to the leaves affected biochemistry, morphology, and phenolic compound synthesis with and without NaCl.

2.
Pest Manag Sci ; 80(3): 1153-1167, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37874198

ABSTRACT

BACKGROUND: Diseases caused by Fusarium pathogens lead to significant yield losses on many economically important crops. The purpose of this study was to evaluate the antagonistic capability and chemical profile of the bioagent Trichoderma asperellum against several Fusarium strains. The efficacy of this strain in reducing Fusarium-root rot disease in dry bean was also examined. RESULTS: The T. asperellum strain was identified based on sequencing the internal transcribed spacer (ITS) and tef1 gen regions of ribosomal DNA. Dual cultural assay demonstrated their antagonistic activity against the studied Fusarium strains due to the probable combination of competition, mycoparasitism and antibiosis. This strain was positive for cellulase, chitinase and protease activity. The crude extracts of T. asperellum significantly suppressed the growth of the tested Fusarium strains with inhibition zone values ranging from 7.3 to 19.7 mm and minimum inhibitory concentration (MIC) values ranging from 0.15 to 1.42 mg mL-1 . The gas chromatography-mass spectrometry (GC-MS) analysis of cell free supernatant and mycelial biomass of T. asperellum showed the presence of 27 and 21 compounds, respectively. The main compounds responsible for the bioactivity were butylated hydroxytoluene, hexadecanoic acid, 9-octadecenoic acid, ergosterol and hexadecanoic acid, ethyl ester. Trichoderma asperellum significantly increased plant emergence and reduced root rot caused by Fusarium solani in dry bean grown under glasshouse and field trials. Further, plant biomass and dry bean yield were higher in T. asperellum-treated plants than in control plants. CONCLUSION: Trichoderma asperellum was highly effective, through various mechanisms, against Fusarium strains especially F. solani which causes root rot in dry bean. © 2023 Society of Chemical Industry.


Subject(s)
Fusarium , Hypocreales , Trichoderma , Trichoderma/physiology , Palmitic Acid/pharmacology , Plant Diseases , Plants
3.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834941

ABSTRACT

Research on the use of different parts of the Moringa oleifera plant as a nutritional and pharmaceutical resource for human and animals has increased in recent years. This study aimed to investigate the chemical composition and the TPCs and TFCs of Moringa leaves, the antimicrobial activities of Moringa successive ethanolic, aqueous, crude aqueous extracts, and green-chemically synthesized characterized Ag-NPs. The results indicated that the ethanolic extract recorded the highest activity against E. coli. On the other side, the aqueous extract showed higher activity, and its effects ranged from 0.03 to 0.33 mg/mL against different strains. The MIC values of Moringa Ag-NPs against different pathogenic bacteria ranged from 0.05 mg/mL to 0.13 mg/mL, and the activity of the crude aqueous extract ranged from 0.15 to 0.83 mg/mL. For the antifungal activity, the ethanolic extract recorded the highest activity at 0.04 mg/mL, and the lowest activity was recorded at 0.42 mg/mL. However, the aqueous extract showed effects ranging from 0.42 to 1.17 mg/mL. Moringa Ag-NPs showed higher activity against the different fungal strains than the crude aqueous extract, and they ranged from 0.25 to 0.83 mg/mL. The MIC values of the Moringa crude aqueous extract ranged from 0.74 to 3.33 mg/mL. Moringa Ag-NPs and their crude aqueous extract may be utilized to boost antimicrobial attributes.


Subject(s)
Anti-Infective Agents , Moringa oleifera , Humans , Animals , Moringa oleifera/chemistry , Escherichia coli , Anti-Infective Agents/analysis , Ethanol/analysis , Water/analysis , Plant Leaves/chemistry , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...