Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37973413

ABSTRACT

Here we outline a vignette of the Bioscience Technology Facility (BTF) at the University of York as a singular exemplar of the Full Cost Recovery model. It is fully appreciated that every facility operates slightly differently, and each are subject to various rules at the institutional, regional and national level. Understanding the regulations that need to be followed for your cost recovery model may require discussion with your administrators to ensure compliance regulations for your Institution and governing bodies are followed. The below is almost a pick and mix of ways of working. It is, however, one of the few examples that is able to fully recover its operating costs within an academic environment and has sought and obtained full institutional and funders support. This model is now being much more widely adopted across the United Kingdom although again always with slightly different interpretations.

2.
J Pers Med ; 11(4)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917320

ABSTRACT

Peroxisomal matrix proteins are transported into peroxisomes in a fully-folded state, but whether multimeric proteins are imported as monomers or oligomers is still disputed. Here, we used alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal 5'-phosphate (PLP)-dependent enzyme, whose deficit causes primary hyperoxaluria type I (PH1), as a model protein and compared the intracellular behavior and peroxisomal import of native dimeric and artificial monomeric forms. Monomerization strongly reduces AGT intracellular stability and increases its aggregation/degradation propensity. In addition, monomers are partly retained in the cytosol. To assess possible differences in import kinetics, we engineered AGT to allow binding of a membrane-permeable dye and followed its intracellular trafficking without interfering with its biochemical properties. By fluorescence recovery after photobleaching, we measured the import rate in live cells. Dimeric and monomeric AGT displayed a similar import rate, suggesting that the oligomeric state per se does not influence import kinetics. However, when dimerization is compromised, monomers are prone to misfolding events that can prevent peroxisomal import, a finding crucial to predicting the consequences of PH1-causing mutations that destabilize the dimer. Treatment with pyridoxine of cells expressing monomeric AGT promotes dimerization and folding, thus, demonstrating the chaperone role of PLP. Our data support a model in which dimerization represents a potential key checkpoint in the cytosol at the crossroad between misfolding and correct targeting, a possible general mechanism for other oligomeric peroxisomal proteins.

3.
Dalton Trans ; 49(43): 15219-15230, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33021299

ABSTRACT

We report cytotoxic ruthenium(ii) complexes of the general formula [RuCl(cis-tach)(diphosphine)]+ (cis-tach = cis-cis-1,3,5-triaminocyclohexane) that have been characterised by 1H, 13C and 31P{1H} NMR spectroscopy, mass spectrometry, X-ray crystallography and elemental analysis. The kinetics of aquation and stability of the active species have been studied, showing that the chlorido ligand is substituted by water at 298 K with first order rate constants of 10-2-10-3 s-1, ideal for potential clinical use as anti-tumour agents. Strong interactions with biologically relevant duplex and quadruplex DNA models correlate with the activity observed with A549, A2780 and 293T cell lines, and the degree of activity was found to be sensitive to the chelating diphosphine ligand. A label-free ptychographic cell imaging technique recorded cell death processes over 4 days. The Ru(ii) cis-tach diphosphine complexes exhibit anti-proliferative effects, in some cases outperforming cisplatin and other cytotoxic ruthenium complexes.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , DNA/metabolism , Phosphines/chemistry , Ruthenium/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/metabolism , Humans , Kinetics , Temperature
4.
J Neuroinflammation ; 17(1): 87, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32192526

ABSTRACT

BACKGROUND: An emerging problem in the treatment of breast cancer is the increasing incidence of metastases to the brain. Metastatic brain tumours are incurable and can cause epileptic seizures and cognitive impairment, so better understanding of this niche, and the cellular mechanisms, is urgently required. Microglia are the resident brain macrophage population, becoming "activated" by neuronal injury, eliciting an inflammatory response. Microglia promote proliferation, angiogenesis and invasion in brain tumours and metastases. However, the mechanisms underlying microglial involvement appear complex and better models are required to improve understanding of function. METHODS: Here, we sought to address this need by developing a model to study metastatic breast cancer cell-microglial interactions using intravital imaging combined with ex vivo electrophysiology. We implanted an optical window on the parietal bone to facilitate observation of cellular behaviour in situ in the outer cortex of heterozygous Cx3cr1GFP/+ mice. RESULTS: We detected GFP-expressing microglia in Cx3cr1GFP/+ mice up to 350 µm below the window without significant loss of resolution. When DsRed-expressing metastatic MDA-MB-231 breast cancer cells were implanted in Matrigel under the optical window, significant accumulation of activated microglia around invading tumour cells could be observed. This inflammatory response resulted in significant cortical disorganisation and aberrant spontaneously-occurring local field potential spike events around the metastatic site. CONCLUSIONS: These data suggest that peritumoral microglial activation and accumulation may play a critical role in local tissue changes underpinning aberrant cortical activity, which offers a possible mechanism for the disrupted cognitive performance and seizures seen in patients with metastatic breast cancer.


Subject(s)
Brain Neoplasms/secondary , Breast Neoplasms/pathology , Disease Models, Animal , Intravital Microscopy/methods , Microglia , Animals , Cell Line, Tumor , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tumor Microenvironment/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...