Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 55(5): 3305-3312, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33565865

ABSTRACT

Chemical disinfectants employed in water and wastewater treatment can produce a variety of transformation products, including carbonyl compounds (e.g., saturated and unsaturated aldehydes and ketones). Experiments conducted under conditions relevant to chlorination at drinking water treatment plants and residual chlorine application in distribution systems indicate that α,ß-unsaturated carbonyl compounds readily react with free chlorine and free bromine over a wide pH range but react slowly with combined chlorine (i.e., NH2Cl). For nearly all of the 11 α,ß-unsaturated carbonyl compounds studied, the apparent second-order rate constants for the reaction with free chlorine increased in a linear manner with hypochlorite (OCl-) concentrations, yielding species-specific second-order rate constants for the reaction with OCl- ranging from 0.21 to 12 M-1 s-1. Predictions based on the second-order rate constants indicate that a substantial fraction (i.e., >60%) of several of the more prominent α,ß-unsaturated carbonyls (e.g., acrolein, crotonaldehyde) will be transformed to an appreciable extent in distribution systems by free chlorine. Products from the reaction of chlorine with acrolein, crotonaldehyde, and methyl vinyl ketone were tentatively identified using nuclear magnetic resonance (NMR) and gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-HRT-MS). These products lacked unsaturated carbons and, in some cases, contained multiple halogens.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Bromine , Chlorine , Kinetics
2.
Environ Sci Technol ; 54(17): 10895-10903, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32833432

ABSTRACT

Low molecular weight, uncharged compounds have been the subject of considerable study at advanced treatment plants employed for potable water reuse. However, previously identified compounds only account for a small fraction of the total dissolved organic carbon remaining after reverse osmosis treatment. Uncharged carbonyl compounds (e.g., aldehydes and ketones) formed during oxidation have rarely been monitored in potable water reuse systems. To determine the relative importance of these compounds to final product water quality, samples were collected from six potable water reuse facilities and one conventional drinking water treatment plant. Saturated carbonyl compounds (e.g., formaldehyde, acetone) and α,ß-unsaturated aldehydes (e.g., acrolein, crotonaldehyde) were quantified with a sensitive new analytical method. Relatively high concentrations of carbonyls (i.e., above 7 µM) were observed after ozonation of wastewater effluent. Biological filtration reduced concentrations of carbonyls by over 90%. Rejection of the carbonyls during reverse osmosis was correlated with molecular weight, with concentrations decreasing by 33% to 58%. Transformation of carbonyls resulted in decreases in concentration of 10% to 90% during advanced oxidation, with observed decreases consistent with rate constants for reactions of the compounds with hydroxyl radicals. Overall, carbonyl compounds accounted for 19% to 38% of the dissolved organic carbon in reverse osmosis-treated water.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Filtration , Wastewater
3.
Environ Sci Technol ; 54(13): 8352-8361, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32519538

ABSTRACT

Chemical oxidation with hydroxyl radical (HO•) and sulfate radical (SO4•-) is often used to treat water contaminated with aromatic compounds. Although oxidation of aromatics by these radicals has been studied for decades, the commonly accepted transformation pathway-sequential hydroxylation of the ring followed by ring cleavage and mineralization of the resulting products-does not account for the loss of the parent compound observed during the initial phase of the process. To assess the importance of pathways for aromatic compound oxidation that do not result in ring hydroxylation, we identified products formed after the initial reaction between HO• or SO4•- and benzene, toluene, ethylbenzene, and (BTEX) xylene isomers. We quantified products of ring hydroxylation and oxidation of alkyl substituents as well as a suite of ring-cleavage products, including acetaldehyde, formic acid, 6-, 7-, or 8-carbon oxoenals and oxodials. Other ring-cleavage products, which were most likely aldehydes and organic acids, were observed but not quantified. When SO4•- was used as the oxidant, aromatic organosulfates also were formed. Our results indicated that the initial phase of the oxidation process involves radical addition, hydrogen abstraction, or one-electron transfer to the ring followed by reaction with O2. The hydroxycyclohexadienylperoxy radical produced in this reaction can eliminate hydroperoxyl radical (HO2•) to produce a phenolic compound or it can rearrange to form a bicyclic peroxy intermediate that subsequently undergoes ring cleavage. Hydroxylation of the ring and oxidation of the alkyl substituent accounted for approximately 15-40% of the reacted mass of the parent compound. Ring-cleavage products for which quantification was possible accounted for approximately 2 to 10% of the reacted mass. Our results raise concerns about the formation of toxic ring-cleavage products during the initial stage of oxidation whenever HO• or SO4•- is used for the treatment of water containing benzene or alkylbenzenes.


Subject(s)
Benzene , Xylenes , Kinetics , Oxidation-Reduction , Oxidative Stress
4.
Acc Chem Res ; 52(3): 615-622, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30821146

ABSTRACT

In response to water scarcity and an increased recognition of the risks associated with the presence of chemical contaminants, environmental engineers have developed advanced water treatment systems that are capable of converting municipal wastewater effluent into drinking water. This practice, which is referred to as potable water reuse, typically relies upon reverse osmosis (RO) treatment followed by exposure to ultraviolet (UV) light and addition of hydrogen peroxide (H2O2). These two treatment processes individually are capable of controlling many of the chemical and microbial contaminants in wastewater; however, a few chemicals may still be present after treatment at concentrations that affect water quality. Low-molecular weight (<200 Da), uncharged compounds represent the greatest challenge for RO treatment. For potable water reuse systems, compounds of greatest concern include oxidation products formed during treatment (e.g., N-nitrosodimethylamine, halogenated disinfection byproducts) and compounds present in wastewater effluent (e.g., odorous compounds, organic solvents). Although the concentrations of most of these compounds decrease to levels where they no longer compromise water quality after they encounter the second treatment barrier (i.e., UV/H2O2), low-molecular weight compounds that are resistant to direct photolysis and exhibit low reactivity with hydroxyl radical (·OH) may persist. While attempts to identify the compounds that pass through both barriers have accounted for approximately half of the dissolved organic carbon remaining after treatment, it is unlikely that a significant fraction of the remaining unknowns will ever be identified with current analytical techniques. Nonetheless, the toxicity-weighted concentration of certain known compounds (e.g., disinfection byproducts) is typically lower in RO-UV/H2O2 treated water than conventional drinking water. To avoid the expense associated with managing the concentrate produced by RO, environmental engineers have begun to employ alternative treatment barriers. The use of alternatives such as nanofiltration, ozonation followed by biological filtration, or activated carbon filtration avoids the problems associated with the production and disposal of RO concentrate, but they may allow a larger number of chemical contaminants to pass through the treatment process. In addition to the transformation products and solvents that pose risks in the RO-UV/H2O2 system, these alternative barriers are challenged by larger, polar compounds that are not amenable to oxidation, such as perfluoroalkyl acids and phosphate-containing flame retardants. To fully protect consumers who rely upon potable water reuse systems, new policies are needed to prevent chemicals that are difficult to remove during advanced treatment from entering the sewer system. By using knowledge about the composition of municipal wastewater and the mechanisms through which contaminants are removed during treatment, it should be possible to safely reuse municipal wastewater effluent as a drinking water source.

SELECTION OF CITATIONS
SEARCH DETAIL
...