Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713514

ABSTRACT

Pancreatic ß-cell dysfunction is a key feature of type 2 diabetes, and novel regulators of insulin secretion are desirable. Here we report that the succinate receptor (SUCNR1) is expressed in ß-cells and is up-regulated in hyperglycemic states in mice and humans. We found that succinate acts as a hormone-like metabolite and stimulates insulin secretion via a SUCNR1-Gq-PKC-dependent mechanism in human ß-cells. Mice with ß-cell-specific Sucnr1 deficiency exhibit impaired glucose tolerance and insulin secretion on a high-fat diet, indicating that SUCNR1 is essential for preserving insulin secretion in diet-induced insulin resistance. Patients with impaired glucose tolerance show an enhanced nutritional-related succinate response, which correlates with the potentiation of insulin secretion during intravenous glucose administration. These data demonstrate that the succinate/SUCNR1 axis is activated by high glucose and identify a GPCR-mediated amplifying pathway for insulin secretion relevant to the hyperinsulinemia of prediabetic states.

2.
Front Immunol ; 14: 1263926, 2023.
Article in English | MEDLINE | ID: mdl-37854597

ABSTRACT

Introduction: Type 1 diabetes is characterized by pancreatic islet inflammation and autoimmune-driven pancreatic ß-cell destruction. Interferon-α (IFNα) is a key player in early human type 1 diabetes pathogenesis. IFNα activates the tyrosine kinase 2 (TYK2)-signal transducer and activator of transcription (STAT) pathway, leading to inflammation, HLA class I overexpression, endoplasmic reticulum (ER) stress, and ß-cell apoptosis (in synergy with IL-1ß). As TYK2 inhibition has raised as a potential therapeutic target for the prevention or treatment of type 1 diabetes, we investigated whether the selective TYK2 inhibitor deucravacitinib could protect ß-cells from the effects of IFNα and other proinflammatory cytokines (i.e., IFNγ and IL-1ß). Methods: All experiments were performed in the human EndoC-ßH1 ß-cell line. HLA class I expression, inflammation, and ER stress were evaluated by real-time PCR, immunoblotting, and/or immunofluorescence. Apoptosis was assessed by the DNA-binding dyes Hoechst 33342 and propidium iodide or caspase 3/7 activity. The promoter activity was assessed by luciferase assay. Results: Deucravacitinib prevented IFNα effects, such as STAT1 and STAT2 activation and MHC class I hyperexpression, in a dose-dependent manner without affecting ß-cell survival and function. A comparison between deucravacitinib and two Janus kinase inhibitors, ruxolitinib and baricitinib, showed that deucravacitinib blocked IFNα- but not IFNγ-induced signaling pathway. Deucravacitinib protected ß-cells from the effects of two different combinations of cytokines: IFNα + IL-1ß and IFNγ + IL-1ß. Moreover, this TYK2 inhibitor could partially reduce apoptosis and inflammation in cells pre-treated with IFNα + IL-1ß or IFNγ + IL-1ß. Discussion: Our findings suggest that, by protecting ß-cells against the deleterious effects of proinflammatory cytokines without affecting ß-cell function and survival, deucravacitinib could be repurposed for the prevention or treatment of early type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , TYK2 Kinase , Humans , Diabetes Mellitus, Type 1/metabolism , Cytokines/pharmacology , Interferon-alpha/metabolism , Inflammation
3.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36982731

ABSTRACT

Diabetes is a chronic disease that affects glucose metabolism, either by autoimmune-driven ß-cell loss or by the progressive loss of ß-cell function, due to continued metabolic stresses. Although both α- and ß-cells are exposed to the same stressors, such as proinflammatory cytokines and saturated free fatty acids (e.g., palmitate), only α-cells survive. We previously reported that the abundant expression of BCL-XL, an anti-apoptotic member of the BCL-2 family of proteins, is part of the α-cell defense mechanism against palmitate-induced cell death. Here, we investigated whether BCL-XL overexpression could protect ß-cells against the apoptosis induced by proinflammatory and metabolic insults. For this purpose, BCL-XL was overexpressed in two ß-cell lines-namely, rat insulinoma-derived INS-1E and human insulin-producing EndoC-ßH1 cells-using adenoviral vectors. We observed that the BCL-XL overexpression in INS-1E cells was slightly reduced in intracellular Ca2+ responses and glucose-stimulated insulin secretion, whereas these effects were not observed in the human EndoC-ßH1 cells. In INS-1E cells, BCL-XL overexpression partially decreased cytokine- and palmitate-induced ß-cell apoptosis (around 40% protection). On the other hand, the overexpression of BCL-XL markedly protected EndoC-ßH1 cells against the apoptosis triggered by these insults (>80% protection). Analysis of the expression of endoplasmic reticulum (ER) stress markers suggests that resistance to the cytokine and palmitate conferred by BCL-XL overexpression might be, at least in part, due to the alleviation of ER stress. Altogether, our data indicate that BCL-XL plays a dual role in ß-cells, participating both in cellular processes related to ß-cell physiology and in fostering survival against pro-apoptotic insults.


Subject(s)
Cytokines , Insulin-Secreting Cells , Animals , Humans , Rats , Apoptosis/genetics , Cell Line , Cytokines/metabolism , Insulin-Secreting Cells/metabolism , Palmitates/pharmacology , Palmitates/metabolism
4.
Int J Mol Sci ; 23(9)2022 May 01.
Article in English | MEDLINE | ID: mdl-35563431

ABSTRACT

There is a need to develop identification tests for Metabolism Disrupting Chemicals (MDCs) with diabetogenic activity. Here we used the human EndoC-ßH1 ß-cell line, the rat ß-cell line INS-1E and dispersed mouse islet cells to assess the effects of endocrine disruptors on cell viability and glucose-stimulated insulin secretion (GSIS). We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM). Bisphenol-A (BPA) and tributyltin (TBT) were used as controls while four other chemicals, namely perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS) and dichlorodiphenyldichloroethylene (DDE), were used as "unknowns". Regarding cell viability, BPA and TBT increased cell death as previously observed. Their mode of action involved the activation of estrogen receptors and PPARγ, respectively. ROS production was a consistent key event in BPA-and TBT-treated cells. None of the other MDCs tested modified viability or ROS production. Concerning GSIS, TBT increased insulin secretion while BPA produced no effects. PFOA decreased GSIS, suggesting that this chemical could be a "new" diabetogenic agent. Our results indicate that the EndoC-ßH1 cell line is a suitable human ß-cell model for testing diabetogenic MDCs. Optimization of the test methods proposed here could be incorporated into a set of protocols for the identification of MDCs.


Subject(s)
Endocrine Disruptors , Insulin-Secreting Cells , Animals , Benzhydryl Compounds/metabolism , Benzhydryl Compounds/toxicity , Endocrine Disruptors/metabolism , Endocrine Disruptors/toxicity , Glucose/metabolism , Humans , Insulin Secretion , Insulin-Secreting Cells/metabolism , Mice , Rats , Reactive Oxygen Species/metabolism
5.
Environ Int ; 164: 107250, 2022 06.
Article in English | MEDLINE | ID: mdl-35461094

ABSTRACT

17ß-estradiol protects pancreatic ß-cells from apoptosis via the estrogen receptors ERα, ERß and GPER. Conversely, the endocrine disruptor bisphenol-A (BPA), which exerts multiple effects in this cell type via the same estrogen receptors, increased basal apoptosis. The molecular-initiated events that trigger these opposite actions have yet to be identified. We demonstrated that combined genetic downregulation and pharmacological blockade of each estrogen receptor increased apoptosis to a different extent. The increase in apoptosis induced by BPA was diminished by the pharmacological blockade or the genetic silencing of GPER, and it was partially reproduced by the GPER agonist G1. BPA and G1-induced apoptosis were abolished upon pharmacological inhibition, silencing of ERα and ERß, or in dispersed islet cells from ERß knockout (BERKO) mice. However, the ERα and ERß agonists PPT and DPN, respectively, had no effect on beta cell viability. To exert their biological actions, ERα and ERß form homodimers and heterodimers. Molecular dynamics simulations together with proximity ligand assays and coimmunoprecipitation experiments indicated that the interaction of BPA with ERα and ERß as well as GPER activation by G1 decreased ERαß heterodimers. We propose that ERαß heterodimers play an antiapoptotic role in beta cells and that BPA- and G1-induced decreases in ERαß heterodimers lead to beta cell apoptosis. Unveiling how different estrogenic chemicals affect the crosstalk among estrogen receptors should help to identify diabetogenic endocrine disruptors.


Subject(s)
Endocrine Disruptors , Insulin-Secreting Cells , Animals , Apoptosis , Endocrine Disruptors/toxicity , Estradiol , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Estrogens/metabolism , GTP-Binding Proteins/metabolism , Mice , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism
6.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613676

ABSTRACT

Metabolism-disrupting chemicals (MDCs) are endocrine disruptors with obesogenic and/or diabetogenic action. There is mounting evidence linking exposure to MDCs to increased susceptibility to diabetes. Despite the important role of glucagon in glucose homeostasis, there is little information on the effects of MDCs on α-cells. Furthermore, there are no methods to identify and test MDCs with the potential to alter α-cell viability and function. Here, we used the mouse α-cell line αTC1-9 to evaluate the effects of MDCs on cell viability and glucagon secretion. We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM): bisphenol-A (BPA), tributyltin (TBT), perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS), and dichlorodiphenyldichloroethylene (DDE). Using two different approaches, MTT assay and DNA-binding dyes, we observed that BPA and TBT decreased α-cell viability via a mechanism that depends on the activation of estrogen receptors and PPARγ, respectively. These two chemicals induced ROS production, but barely altered the expression of endoplasmic reticulum (ER) stress markers. Although PFOA, TPP, TCS, and DDE did not alter cell viability nor induced ROS generation or ER stress, all four compounds negatively affected glucagon secretion. Our findings suggest that αTC1-9 cells seem to be an appropriate model to test chemicals with metabolism-disrupting activity and that the improvement of the test methods proposed herein could be incorporated into protocols for the screening of diabetogenic MDCs.


Subject(s)
Diabetes Mellitus , Endocrine Disruptors , Animals , Mice , Humans , Glucagon , Reactive Oxygen Species , Receptors, Estrogen/metabolism , Endocrine Disruptors/toxicity , Benzhydryl Compounds/toxicity
7.
Int Rev Cell Mol Biol ; 359: 1-80, 2021.
Article in English | MEDLINE | ID: mdl-33832648

ABSTRACT

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic ß-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic ß-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in ß-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in ß-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and ß-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.


Subject(s)
Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/physiopathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Interferon Type I/metabolism , Animals , Autoimmunity , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Epigenesis, Genetic , Humans , Insulin-Secreting Cells/virology , Interferon Type I/genetics , Viruses/metabolism
8.
Chemosphere ; 265: 129051, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33250229

ABSTRACT

Bisphenol-S (BPS) and Bisphenol-F (BPF) are current Bisphenol-A (BPA) substitutes. Here we used pancreatic ß-cells from wild type (WT) and estrogen receptor ß (ERß) knockout (BERKO) mice to investigate the effects of BPS and BPF on insulin secretion, and the expression and activity of ion channels involved in ß-cell function. BPS or BPF rapidly increased insulin release and diminished ATP-sensitive K+ (KATP) channel activity. Similarly, 48 h treatment with BPS or BPF enhanced insulin release and decreased the expression of several ion channel subunits in ß-cells from WT mice, yet no effects were observed in cells from BERKO mice. PaPE-1, a ligand designed to preferentially trigger extranuclear-initiated ER pathways, mimicked the effects of bisphenols, suggesting the involvement of extranuclear-initiated ERß pathways. Molecular dynamics simulations indicated differences in ERß ligand-binding domain dimer stabilization and solvation free energy among different bisphenols and PaPE-1. Our data suggest a mode of action involving ERß whose activation alters three key cellular events in ß-cell, namely ion channel expression and activity, and insulin release. These results may help to improve the hazard identification of bisphenols.


Subject(s)
Estrogen Receptor beta , Receptors, Estrogen , Animals , Benzhydryl Compounds/toxicity , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Insulin , Ion Channels , Mice , Phenols , Receptors, Estrogen/genetics
9.
Metabolism ; 102: 153963, 2020 01.
Article in English | MEDLINE | ID: mdl-31593706

ABSTRACT

BACKGROUND: Pregnancy represents a major metabolic challenge for the mother, and involves a compensatory response of the pancreatic beta-cell to maintain normoglycemia. However, although pancreatic alpha-cells play a key role in glucose homeostasis and seem to be involved in gestational diabetes, there is no information about their potential adaptations or changes during pregnancy. MATERIAL AND METHODS: Non-pregnant (controls) and pregnant C57BL/6 mice at gestational day 18.5 (G18.5) and their isolated pancreatic islets were used for in vivo and ex vivo studies, respectively. The effect of pregnancy hormones was tested in glucagon-secreting α-TC1.9 cells. Immunohistochemical analysis was performed in pancreatic slices. Glucagon gene expression was monitored by RT-qPCR. Glucagon secretion and plasma hormones were measured by ELISA. RESULTS: Pregnant mice on G18.5 exhibited alpha-cell hypertrophy as well as augmented alpha-cell area and mass. This alpha-cell mass expansion was mainly due to increased proliferation. No changes in alpha-cell apoptosis, ductal neogenesis, or alpha-to-beta transdifferentiation were found compared with controls. Pregnant mice on G18.5 exhibited hypoglucagonemia. Additionally, in vitro glucagon secretion at low glucose levels was decreased in isolated islets from pregnant animals. Glucagon content was also reduced. Experiments in α-TC1.9 cells indicated that, unlike estradiol and progesterone, placental lactogens and prolactin stimulated alpha-cell proliferation. Placental lactogens, prolactin and estradiol also inhibited glucagon release from α-TC1.9 cells at low glucose levels. CONCLUSIONS: The pancreatic alpha-cell in mice undergoes several morphofunctional changes during late pregnancy, which may contribute to proper glucose homeostasis. Gestational hormones are likely involved in these processes.


Subject(s)
Adaptation, Physiological/physiology , Gestational Age , Glucagon-Secreting Cells/cytology , Glucagon-Secreting Cells/physiology , Animals , Cell Count , Cell Size , Cells, Cultured , Female , Glucagon/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/physiology , Mice , Mice, Inbred C57BL , Placental Hormones/physiology , Pregnancy
10.
Sci Rep ; 9(1): 10306, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31312012

ABSTRACT

17ß-Estradiol mediates the sensitivity to pain and is involved in sex differences in nociception. The widespread environmental disrupting chemical bisphenol A (BPA) has estrogenic activity, but its implications in pain are mostly unknown. Here we show that treatment of male mice with BPA (50 µg/kg/day) during 8 days, decreases the latency to pain behavior in response to heat, suggesting increased pain sensitivity. We demonstrate that incubation of dissociated dorsal root ganglia (DRG) nociceptors with 1 nM BPA increases the frequency of action potential firing. SCN9A encodes the voltage-gated sodium channel Nav1.7, which is present in DRG nociceptors and is essential in pain signaling. Nav1.7 and other voltage-gated sodium channels in mouse DRG are considered threshold channels because they produce ramp currents, amplifying small depolarizations and enhancing electrical activity. BPA increased Nav-mediated ramp currents elicited with slow depolarizations. Experiments using pharmacological tools as well as DRG from ERß-/- mice indicate that this BPA effect involves ERα and phosphoinositide 3-kinase. The mRNA expression and biophysical properties other than ramp currents of Nav channels, were unchanged by BPA. Our data suggest that BPA at environmentally relevant doses affects the ability to detect noxious stimuli and therefore should be considered when studying the etiology of pain conditions.


Subject(s)
Benzhydryl Compounds/administration & dosage , Ganglia, Spinal/cytology , Nociception/drug effects , Phenols/administration & dosage , Action Potentials/drug effects , Animals , Benzhydryl Compounds/pharmacology , Estrogen Receptor beta/genetics , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Gene Expression Regulation/drug effects , Male , Mice , NAV1.7 Voltage-Gated Sodium Channel/genetics , Phenols/pharmacology , Primary Cell Culture
11.
Sci Rep ; 9(1): 9515, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31266981

ABSTRACT

Most studies in type 1 diabetes (T1D) have focused on the loss of the pancreatic beta-cell population. However, despite the involvement of the alpha-cell in the aetiology and complications of T1D, little is known about the regulation of the pancreatic alpha-cell mass in this disease. The need for a better understanding of this process is further emphasized by recent findings suggesting that alpha-cells may constitute a potential reservoir for beta-cell regeneration. In this study, we characterized the pancreatic alpha-cell mass and its regulatory processes in the transgenic RIP-B7.1 mice model of experimental autoimmune diabetes (EAD). Diabetic mice presented insulitis, hyperglycaemia, hypoinsulinemia and hyperglucagonemia along with lower pancreatic insulin content. While alpha-cell mass and pancreatic glucagon content were preserved at the early-onset of EAD, both parameters were reduced in the advanced phase. At both stages, alpha-cell size, proliferation and ductal neogenesis were up-regulated, whereas apoptosis was almost negligible. Interestingly, we found an increase in the proportion of glucagon-containing cells positive for insulin or the beta-cell transcription factor PDX1. Our findings suggest that pancreatic alpha-cell renewal mechanisms are boosted during the natural course of EAD, possibly as an attempt to maintain the alpha-cell population and/or to increase beta-cell regeneration via alpha-cell transdifferentiation.


Subject(s)
Diabetes Mellitus, Experimental/pathology , Animals , B7-1 Antigen/deficiency , B7-1 Antigen/genetics , Cell Proliferation , Cell Transdifferentiation , Diabetes Mellitus, Experimental/complications , Disease Models, Animal , Glucagon/analysis , Glucagon/metabolism , Glucagon-Secreting Cells/cytology , Glucagon-Secreting Cells/metabolism , Homeodomain Proteins/metabolism , Hyperglycemia/complications , Hyperglycemia/pathology , Insulin/analysis , Insulin/blood , Mice , Mice, Inbred C57BL , Mice, Transgenic , Trans-Activators/metabolism
12.
Diabetologia ; 62(9): 1667-1680, 2019 09.
Article in English | MEDLINE | ID: mdl-31250031

ABSTRACT

AIMS/HYPOTHESIS: Bisphenol-A (BPA) is a widespread endocrine-disrupting chemical that has been associated with type 2 diabetes development. Low doses of BPA modify pancreatic beta cell function and induce insulin resistance; some of these effects are mediated via activation of oestrogen receptors α (ERα) and ß (ERß). Here we investigated whether low doses of BPA regulate the expression and function of ion channel subunits involved in beta cell function. METHODS: Microarray gene profiling of isolated islets from vehicle- and BPA-treated (100 µg/kg per day for 4 days) mice was performed using Affymetrix GeneChip Mouse Genome 430.2 Array. Expression level analysis was performed using the normalisation method based on the processing algorithm 'robust multi-array average'. Whole islets or dispersed islets from C57BL/6J or oestrogen receptor ß (ERß) knockout (Erß-/-) mice were treated with vehicle or BPA (1 nmol/l) for 48 h. Whole-cell patch-clamp recordings were used to measure Na+ and K+ currents. mRNA expression was evaluated by quantitative real-time PCR. RESULTS: Microarray analysis showed that BPA modulated the expression of 1440 probe sets (1192 upregulated and 248 downregulated genes). Of these, more than 50 genes, including Scn9a, Kcnb2, Kcnma1 and Kcnip1, encoded important Na+ and K+ channel subunits. These findings were confirmed by quantitative RT-PCR in islets from C57BL/6J BPA-treated mice or whole islets treated ex vivo. Electrophysiological measurements showed a decrease in both Na+ and K+ currents in BPA-treated islets. The pharmacological profile indicated that BPA reduced currents mediated by voltage-activated K+ channels (Kv2.1/2.2 channels) and large-conductance Ca2+-activated K+ channels (KCa1.1 channels), which agrees with BPA's effects on gene expression. Beta cells from ERß-/- mice did not present BPA-induced changes, suggesting that ERß mediates BPA's effects in pancreatic islets. Finally, BPA increased burst duration, reduced the amplitude of the action potential and enlarged the action potential half-width, leading to alteration in beta cell electrical activity. CONCLUSIONS/INTERPRETATION: Our data suggest that BPA modulates the expression and function of Na+ and K+ channels via ERß in mouse pancreatic islets. Furthermore, BPA alters beta cell electrical activity. Altogether, these BPA-induced changes in beta cells might play a role in the diabetogenic action of BPA described in animal models.


Subject(s)
Benzhydryl Compounds/pharmacology , Diabetes Mellitus, Type 2/metabolism , Estrogen Receptor beta/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Phenols/pharmacology , Animals , Estrogen Receptor alpha/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred C57BL , Potassium/metabolism , Real-Time Polymerase Chain Reaction , Sodium/metabolism
13.
Mol Cell Endocrinol ; 479: 123-132, 2019 01 05.
Article in English | MEDLINE | ID: mdl-30261212

ABSTRACT

Although there is growing evidence that cortistatin regulates several functions in different tissues, its role in the endocrine pancreas is not totally known. Here, we aim to study the effect of cortistatin on pancreatic beta-cells and glucose-stimulated insulin secretion (GSIS). Exposure of isolated mouse islets to cortistatin inhibited GSIS. This effect was prevented using a somatostatin receptor antagonist. Additionally, cortistatin hyperpolarized the membrane potential and reduced glucose-induced action potentials in isolated pancreatic beta-cells. Cortistatin did not modify ATP-dependent K+ (KATP) channel activity. In contrast, cortistatin increased the activity of a small conductance channel with characteristics of G protein-coupled inwardly rectifying K+ (GIRK) channels. The cortistatin effects on membrane potential and GSIS were largely reduced in the presence of a GIRK channel antagonist and by down-regulation of GIRK2 with small interfering RNA. Thus, cortistatin acts as an inhibitory signal for glucose-induced electrical activity and insulin secretion in the mouse pancreatic beta-cell.


Subject(s)
Electrophysiological Phenomena/drug effects , Glucose/pharmacology , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Neuropeptides/pharmacology , Animals , Bee Venoms/pharmacology , Calcium/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Exocytosis/drug effects , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Gene Expression Regulation/drug effects , Insulin-Secreting Cells/drug effects , KATP Channels/metabolism , Male , Mice, Inbred C57BL
14.
Diabetologia ; 62(3): 459-472, 2019 03.
Article in English | MEDLINE | ID: mdl-30478640

ABSTRACT

AIMS/HYPOTHESIS: The initial stages of type 1 diabetes are characterised by an aberrant islet inflammation that is in part regulated by the interaction between type 1 diabetes susceptibility genes and environmental factors. Chromosome 16p13 is associated with type 1 diabetes and CLEC16A is thought to be the aetiological gene in the region. Recent gene expression analysis has, however, indicated that SNPs in CLEC16A modulate the expression of a neighbouring gene with unknown function named DEXI, encoding dexamethasone-induced protein (DEXI). We therefore evaluated the role of DEXI in beta cell responses to 'danger signals' and determined the mechanisms involved. METHODS: Functional studies based on silencing or overexpression of DEXI were performed in rat and human pancreatic beta cells. Beta cell inflammation and apoptosis, driven by a synthetic viral double-stranded RNA, were evaluated by real-time PCR, western blotting and luciferase assays. RESULTS: DEXI-silenced beta cells exposed to a synthetic double-stranded RNA (polyinosinic:polycytidylic acid [PIC], a by-product of viral replication) showed reduced activation of signal transducer and activator of transcription (STAT) 1 and lower production of proinflammatory chemokines that was preceded by a reduction in IFNß levels. Exposure to PIC increased chromatin-bound DEXI and IFNß promoter activity. This effect on IFNß promoter was inhibited in DEXI-silenced beta cells, suggesting that DEXI is implicated in the regulation of IFNß transcription. In a mirror image of knockdown experiments, DEXI overexpression led to increased levels of STAT1 and proinflammatory chemokines. CONCLUSIONS/INTERPRETATION: These observations support DEXI as the aetiological gene in the type 1 diabetes-associated 16p13 genomic region, and provide the first indication of a link between this candidate gene and the regulation of local antiviral immune responses in beta cells. Moreover, our results provide initial information on the function of DEXI.


Subject(s)
DNA-Binding Proteins/genetics , Inflammation/genetics , Insulin-Secreting Cells/metabolism , Interferon Type I/metabolism , Membrane Proteins/genetics , STAT Transcription Factors/metabolism , Signal Transduction/genetics , Animals , Apoptosis/genetics , DNA-Binding Proteins/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Insulin-Secreting Cells/pathology , Membrane Proteins/metabolism , Polymorphism, Single Nucleotide , RNA, Double-Stranded , Rats
15.
Article in English | MEDLINE | ID: mdl-30429829

ABSTRACT

Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDCs). It is used as the base compound in the production of polycarbonate and other plastics present in many consumer products. It is also used as a building block in epoxy can coating and the thermal paper of cash register receipts. Humans are consistently exposed to BPA and, in consequence, this compound has been detected in the majority of individuals examined. Over the last decade, an enlarging body of evidence has provided a strong support for the role of BPA in the etiology of diabetes and other metabolic disorders. Timing of exposure to EDCs results crucial since it has important implications on the resulting adverse effects. It is now well established that the developing organisms are particularly sensitive to environmental influences. Exposure to EDCs during early life may result in permanent adverse consequences, which increases the risk of developing chronic diseases like diabetes in adult life. In addition to that, developmental abnormalities can be transmitted from one generation to the next, thus affecting future generations. More recently, it has been proposed that gestational environment may also program long-term susceptibility to metabolic disorders in the mother. In the present review, we will comment and discuss the contributing role of BPA in the etiology of diabetes. We will address the metabolic consequences of BPA exposure at different stages of life and comment on the final phenotype observed in different whole-animal models of study.

16.
EBioMedicine ; 36: 367-375, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30269996

ABSTRACT

BACKGROUND: Antibodies targeting PD-1 and its ligand PDL1 are used in cancer immunotherapy but may lead to autoimmune diseases, including type 1 diabetes (T1D). It remains unclear whether PDL1 is expressed in pancreatic islets of people with T1D and how is it regulated. METHODS: The expression of PDL1, IRF1, insulin and glucagon was evaluated in samples of T1D donors by immunofluorescence. Cytokine-induced PDL1 expression in the human beta cell line, EndoC-ßH1, and in primary human pancreatic islets was determined by real-time RT-PCR, flow cytometry and Western blot. Specific and previously validated small interference RNAs were used to inhibit STAT1, STAT2, IRF1 and JAK1 signaling. Key results were validated using the JAK inhibitor Ruxolitinib. FINDINGS: PDL1 was present in insulin-positive cells from twelve T1D individuals (6 living and 6 deceased donors) but absent from insulin-deficient islets or from the islets of six non-diabetic controls. Interferons-α and -γ, but not interleukin-1ß, induced PDL1 expression in vitro in human islet cells and EndoC-ßH1 cells. Silencing of STAT1 or STAT2 individually did not prevent interferon-α-induced PDL1, while blocking of JAKs - a proposed therapeutic strategy for T1D - or IRF1 prevented PDL1 induction. INTERPRETATION: These findings indicate that PDL1 is expressed in beta cells from people with T1D, possibly to attenuate the autoimmune assault, and that it is induced by both type I and II interferons via IRF1.


Subject(s)
B7-H1 Antigen/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Gene Expression Regulation , Interferon Regulatory Factor-1/metabolism , Interferon-alpha/metabolism , Interferon-gamma/metabolism , Islets of Langerhans/metabolism , Adolescent , Adult , Biomarkers , Cell Line , Child , Child, Preschool , Humans , Insulin-Secreting Cells/metabolism , Middle Aged , Young Adult
17.
J Endocrinol ; 239(2): R27-R45, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30072426

ABSTRACT

Type 2 diabetes is a chronic, heterogeneous syndrome characterized by insulin resistance and pancreatic ß-cell dysfunction or death. Among several environmental factors contributing to type 2 diabetes development, endocrine-disrupting chemicals (EDCs) have been receiving special attention. These chemicals include a wide variety of pollutants, from components of plastic to pesticides, with the ability to modulate endocrine system function. EDCs can affect multiple cellular processes, including some related to energy production and utilization, leading to alterations in energy homeostasis. Mitochondria are primarily implicated in cellular energy conversion, although they also participate in other processes, such as hormone secretion and apoptosis. In fact, mitochondrial dysfunction due to reduced oxidative capacity, impaired lipid oxidation and increased oxidative stress has been linked to insulin resistance and type 2 diabetes. Herein, we review the main mechanisms whereby metabolism-disrupting chemical (MDC), a subclass of EDCs that disturbs energy homeostasis, cause mitochondrial dysfunction, thus contributing to the establishment of insulin resistance and type 2 diabetes. We conclude that MDC-induced mitochondrial dysfunction, which is mainly characterized by perturbations in mitochondrial bioenergetics, biogenesis and dynamics, excessive reactive oxygen species production and activation of the mitochondrial pathway of apoptosis, seems to be a relevant mechanism linking MDCs to type 2 diabetes development.


Subject(s)
Diabetes Mellitus, Type 2/chemically induced , Endocrine Disruptors/toxicity , Mitochondria/drug effects , Animals , Humans , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects
18.
Sci Rep ; 8(1): 4262, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29511196

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

19.
Diabetologia ; 61(3): 636-640, 2018 03.
Article in English | MEDLINE | ID: mdl-29305625

ABSTRACT

AIMS/HYPOTHESIS: IFN-α, a cytokine expressed in human islets from individuals affected by type 1 diabetes, plays a key role in the pathogenesis of diabetes by upregulating inflammation, endoplasmic reticulum (ER) stress and MHC class I overexpression, three hallmarks of islet histology in early type 1 diabetes. We tested whether expression of these mediators of beta cell loss is reversible upon IFN-α withdrawal or IFN-α pathway inhibition. METHODS: IFN-α-induced MHC class I overexpression, ER stress and inflammation were evaluated by flow cytometry, immunofluorescence and real-time PCR in human EndoC-ßH1 cells or human islets exposed to IFN-α with or without the presence of Janus kinase (JAK) inhibitors. Protein expression was evaluated by western blot. RESULTS: IFN-α-induced expression of inflammatory and ER stress markers returned to baseline after 24-48 h following cytokine removal. In contrast, MHC class I overexpression at the cell surface persisted for at least 7 days. Treatment with JAK inhibitors, when added with IFN-α, prevented MHC class I overexpression, but when added 24 h after IFN-α exposure these inhibitors failed to accelerate MHC class I return to baseline. CONCLUSIONS/INTERPRETATION: IFN-α mediates a long-lasting and preferential MHC class I overexpression in human beta cells, which is not affected by the subsequent addition of JAK inhibitors. These observations suggest that IFN-α-stimulated long-lasting MHC class I expression may amplify beta cell antigen presentation during the early phase of type 1 diabetes and that IFN-α inhibitors might need to be used at very early stages of the disease to be effective.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Interferon-alpha/pharmacology , Blotting, Western , Cell Line , Diabetes Mellitus, Type 1/metabolism , Endoplasmic Reticulum Stress/drug effects , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Islets of Langerhans/cytology , Islets of Langerhans/drug effects , Janus Kinase Inhibitors/pharmacology , Nitriles , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Real-Time Polymerase Chain Reaction , Sulfones/pharmacology
20.
Diabetes ; 67(3): 423-436, 2018 03.
Article in English | MEDLINE | ID: mdl-29246973

ABSTRACT

Progressive failure of insulin-producing ß-cells is the central event leading to diabetes, but the signaling networks controlling ß-cell fate remain poorly understood. Here we show that SRp55, a splicing factor regulated by the diabetes susceptibility gene GLIS3, has a major role in maintaining the function and survival of human ß-cells. RNA sequencing analysis revealed that SRp55 regulates the splicing of genes involved in cell survival and death, insulin secretion, and c-Jun N-terminal kinase (JNK) signaling. In particular, SRp55-mediated splicing changes modulate the function of the proapoptotic proteins BIM and BAX, JNK signaling, and endoplasmic reticulum stress, explaining why SRp55 depletion triggers ß-cell apoptosis. Furthermore, SRp55 depletion inhibits ß-cell mitochondrial function, explaining the observed decrease in insulin release. These data unveil a novel layer of regulation of human ß-cell function and survival, namely alternative splicing modulated by key splicing regulators such as SRp55, that may cross talk with candidate genes for diabetes.


Subject(s)
Alternative Splicing , Apoptosis , Bcl-2-Like Protein 11/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Phosphoproteins/metabolism , Serine-Arginine Splicing Factors/metabolism , bcl-2-Associated X Protein/metabolism , Bcl-2-Like Protein 11/genetics , Cell Line , Cell Survival , Cells, Cultured , Endoplasmic Reticulum Stress , Gene Expression Profiling , Gene Expression Regulation , Humans , Insulin Secretion , Insulin-Secreting Cells/cytology , MAP Kinase Signaling System , Mitochondria/enzymology , Mitochondria/metabolism , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphorylation , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , RNA Interference , Serine-Arginine Splicing Factors/antagonists & inhibitors , Serine-Arginine Splicing Factors/chemistry , Serine-Arginine Splicing Factors/genetics , bcl-2-Associated X Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...