Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 37(3): 429-40, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23167744

ABSTRACT

Cannabinoid receptor 1 (CB(1) receptor) controls several neuronal functions, including neurotransmitter release, synaptic plasticity, gene expression and neuronal viability. Downregulation of CB(1) expression in the basal ganglia of patients with Huntington's disease (HD) and animal models represents one of the earliest molecular events induced by mutant huntingtin (mHtt). This early disruption of neuronal CB(1) signaling is thought to contribute to HD symptoms and neurodegeneration. Here we determined whether CB(1) downregulation measured in patients with HD and mouse models was ubiquitous or restricted to specific striatal neuronal subpopulations. Using unbiased semi-quantitative immunohistochemistry, we confirmed previous studies showing that CB(1) expression is downregulated in medium spiny neurons of the indirect pathway, and found that CB(1) is also downregulated in neuropeptide Y (NPY)/neuronal nitric oxide synthase (nNOS)-expressing interneurons while remaining unchanged in parvalbumin- and calretinin-expressing interneurons. CB(1) downregulation in striatal NPY/nNOS-expressing interneurons occurs in R6/2 mice, Hdh(Q150/Q150) mice and the caudate nucleus of patients with HD. In R6/2 mice, CB(1) downregulation in NPY/nNOS-expressing interneurons correlates with diffuse expression of mHtt in the soma. This downregulation also occludes the ability of cannabinoid agonists to activate the pro-survival signaling molecule cAMP response element-binding protein in NPY/nNOS-expressing interneurons. Loss of CB(1) signaling in NPY/nNOS-expressing interneurons could contribute to the impairment of basal ganglia functions linked to HD.


Subject(s)
Basal Ganglia/metabolism , Down-Regulation , Huntington Disease/metabolism , Interneurons/metabolism , Neuropeptide Y/metabolism , Receptor, Cannabinoid, CB1/metabolism , Adult , Aged , Animals , Basal Ganglia/cytology , Calbindin 2 , Cannabinoid Receptor Agonists/pharmacology , Case-Control Studies , Cyclic AMP/metabolism , Disease Models, Animal , Female , Gene Expression , Humans , Huntingtin Protein , Interneurons/classification , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Nerve Tissue Proteins/genetics , Neuropeptide Y/genetics , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Nuclear Proteins/genetics , Parvalbumins/genetics , Parvalbumins/metabolism , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/genetics , S100 Calcium Binding Protein G/genetics , S100 Calcium Binding Protein G/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism
2.
J Biol Chem ; 286(33): 28723-28728, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21665953

ABSTRACT

Agonists at cannabinoid receptors, such as the phytocannabinoid Δ(9)-tetrahydrocannabinol, exert a remarkable array of therapeutic effects but are also associated with undesirable psychoactive side effects. Conversely, targeting enzymes that hydrolyze endocannabinoids (eCBs) allows for more precise fine-tuning of cannabinoid receptor signaling, thus providing therapeutic relief with reduced side effects. Here, we report the development and characterization of an inhibitor of eCB hydrolysis, UCM710, which augments both N-arachidonoylethanolamine and 2-arachidonoylglycerol levels in neurons. This compound displays a unique pharmacological profile in that it inhibits fatty acid amide hydrolase and α/ß-hydrolase domain 6 but not monoacylglycerol lipase. Thus, UCM710 represents a novel tool to delineate the therapeutic potential of compounds that manipulate a subset of enzymes that control eCB signaling.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Arachidonic Acids/metabolism , Cannabinoid Receptor Modulators/metabolism , Endocannabinoids , Enzyme Inhibitors/pharmacology , Glycerides/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Nerve Tissue Proteins/antagonists & inhibitors , Neurons/metabolism , Amidohydrolases/metabolism , Animals , COS Cells , Chlorocebus aethiops , Mice , Monoacylglycerol Lipases/metabolism , Nerve Tissue Proteins/metabolism , Polyunsaturated Alkamides , Receptors, Cannabinoid
3.
Nat Neurosci ; 13(8): 951-7, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20657592

ABSTRACT

The endocannabinoid 2-arachidonoylglycerol (2-AG) regulates neurotransmission and neuroinflammation by activating CB1 cannabinoid receptors on neurons and CB2 cannabinoid receptors on microglia. Enzymes that hydrolyze 2-AG, such as monoacylglycerol lipase, regulate the accumulation and efficacy of 2-AG at cannabinoid receptors. We found that the recently described serine hydrolase alpha-beta-hydrolase domain 6 (ABHD6) also controls the accumulation and efficacy of 2-AG at cannabinoid receptors. In cells from the BV-2 microglia cell line, ABHD6 knockdown reduced hydrolysis of 2-AG and increased the efficacy with which 2-AG can stimulate CB2-mediated cell migration. ABHD6 was expressed by neurons in primary culture and its inhibition led to activity-dependent accumulation of 2-AG. In adult mouse cortex, ABHD6 was located postsynaptically and its selective inhibition allowed the induction of CB1-dependent long-term depression by otherwise subthreshold stimulation. Our results indicate that ABHD6 is a rate-limiting step of 2-AG signaling and is therefore a bona fide member of the endocannabinoid signaling system.


Subject(s)
Arachidonic Acids/metabolism , Brain/metabolism , Glycerides/metabolism , Monoacylglycerol Lipases/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Signal Transduction/physiology , Animals , COS Cells , Cell Line , Cell Movement , Chlorocebus aethiops , Endocannabinoids , Excitatory Postsynaptic Potentials/physiology , Gene Knockdown Techniques , Immunohistochemistry , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microscopy, Electron, Transmission , Neurons/metabolism , Patch-Clamp Techniques , Polymerase Chain Reaction , RNA, Messenger/analysis , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...