Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Infect Dis ; 30(8)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941965

ABSTRACT

Since 1998, notifiable bluetongue virus (BTV) serotypes 1-4, 6, 8, 9, 11, and 16 have been reported in Europe. In August 2006, a bluetongue (BT) outbreak caused by BTV serotype 8 began in northwestern Europe. The Netherlands was declared BT-free in February 2012, and annual monitoring continued. On September 3, 2023, typical BT clinical manifestations in sheep were notified to the Netherlands Food and Product Safety Consumer Authority. On September 6, we confirmed BTV infection through laboratory diagnosis; notifications of clinical signs in cattle were also reported. We determined the virus was serotype 3 by whole-genome sequencing. Retrospective analysis did not reveal BTV circulation earlier than September. The virus source and introduction route into the Netherlands remains unknown. Continuous monitoring and molecular diagnostic testing of livestock will be needed to determine virus spread, and new prevention strategies will be required to prevent BTV circulation within the Netherlands and Europe.

2.
Front Vet Sci ; 8: 688935, 2021.
Article in English | MEDLINE | ID: mdl-34778424

ABSTRACT

Given that bovine herpesvirus 1 (BoHV-1) -the causative agent of Infectious Bovine Rhinotracheitis (IBR)- is still endemic in most European countries, BoHV-1 free herds are subject to a considerable risk of (re)introduction of the virus. The aim of this literature review was to describe published, quantified risk factors that are relevant for the introduction of BoHV-1. The risk factors described in this study can be used as input for modeling eradication scenarios and for communication on biosecurity measures to stakeholders. A literature search was conducted in November 2020 in two major online search databases, PubMed and Web of Science. The search criteria "risk factor" combined with different synonyms for BoHV-1 were explored, which resulted in 564 hits. Only studies performed in Europe, written in Dutch, English, French, German or Spanish with an English summary and that quantified risk factors for introduction of BoHV-1 into cattle herds were included. Studies had to quantify the risk factors with crude odds ratios (OR), an estimate of the chance of a particular event occurring in an exposed group to a non-exposed group. After checking for duplicates and excluding articles that did not meet the inclusion criteria, 12 publications remained for this review. Risk factors were classified into seven groups, i.e., herd characteristics, management, animal characteristics, purchase, direct animal contact, neighborhood and indirect transmission routes. Most relevant factors for introduction of BoHV-1 into cattle herds include herd size, purchase of cattle, cattle density, age of cattle, distance to neighboring cattle herds and professional visitors. Together with other direct and indirect animal contacts, these factors are important when elimination of BoHV-1 is considered. A closed farming system and protective clothing for professional visitors can eliminate the major routes of introduction of BoHV-1 in cattle herds. To the best of our knowledge, this is the first systematic review solely focussing on measures that can be taken to control introduction of BoHV-1 into cattle herds. Besides testing, focus on managing these (biosecurity) factors will decrease the risk of introducing the virus.

3.
Front Vet Sci ; 7: 67, 2020.
Article in English | MEDLINE | ID: mdl-32211425

ABSTRACT

Two vector-borne infections have emerged and spread throughout the north-western part of Europe in the last decade: Bluetongue virus serotype-8 (BTV-8) and the Schmallenberg virus (SBV). The objective of the current study was to compare three statistical methods when applied in a syndromic surveillance context for the early detection of emerging diseases in cattle in the Netherlands. Since BTV-8 and SBV both have a negative effect on milk production in dairy cattle, routinely collected bulk milk recordings were used to compare the three statistical methods in their potential to detect drops in milk production during a period of seven years in which BTV-8 and SBV emerged. A Cusum algorithm, Bayesian disease mapping model, and spatiotemporal cluster analysis using the space-time scan statistic were performed and their performance in terms of sensitivity and specificity was compared. Spatiotemporal cluster analysis performed best for early detection of SBV in cattle in the Netherlands with a relative sensitivity of 71% compared to clinical surveillance and 100% specificity in a year without major disease outbreaks. Sensitivity to detect BTV-8 was low for all methods. However, many alerts of reduced milk production were generated several weeks before the week in which first clinical suspicions were reported. It cannot be excluded that these alerts represent the actual first signs of BTV-8 infections in cattle in the Netherlands thus leading to an underestimation of the sensitivity of the syndromic surveillance methods relative to the clinical surveillance in place.

4.
Vet Microbiol ; 130(1-2): 80-7, 2008 Jul 27.
Article in English | MEDLINE | ID: mdl-18313866

ABSTRACT

A recently developed indirect ELISA for the detection of bluetongue virus (BTV)-specific antibodies in bovine milk samples was compared to that of the routinely used competitive ELISA on serum samples. During the bluetongue outbreak in the Netherlands in 2006, caused by BTV serotype 8, coupled serum and milk samples were obtained from 470 individual cows from 10 BTV-infected farms with an average seroprevalence of 57%. In addition, bulk milk samples of the same farms, and historically BT-negative samples were tested. Compared to the ELISA for sera, the relative specificity and sensitivity of the ELISA for milk samples is 96.5% and 98.9%, respectively when using a S/P% cut-off value of 50% as advised by the manufacturer. The optimal cut-off value was found at S/P% of 90% revealing an optimal specificity (99.0%) combined with an optimal sensitivity (98.1%). Titres in positive individual milk samples ranged from 1 to 2048 with a peak titre of 128. Bulk milk samples contained antibodies with titres ranging from 64 to 512. The ELISA for milk samples was found to be a reliable and robust test. This diagnostic tool is very useful, and may replace the ELISA for serum samples as first choice in order to get insight into the status of lactating individual animals and therewith of the entire herd with respect to BTV infection.


Subject(s)
Antibodies, Viral/analysis , Bluetongue virus/immunology , Enzyme-Linked Immunosorbent Assay/veterinary , Milk/chemistry , Animals , Bluetongue/epidemiology , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/virology , Female , Netherlands/epidemiology , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...