Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Rev Sci Instrum ; 90(12): 125115, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31893784

ABSTRACT

In the last few years, the Biophysics Working Group of the Institute of Aerospace Medicine of the German Aerospace Center (DLR) started the development of a small low power consumption radiation detector system for the measurement of the absorbed dose to be applied in various environments, such as onboard aircraft, in space, and also as a demonstration tool for students. These so called DLR M-42 detectors are based on an electronics design, which can easily be adjusted to the user- and mission-requirements. M-42 systems were already applied for measurements in airplanes, during two MAPHEUS (Materialphysikalische Experimente unter Schwerelosigkeit) rocket missions, and are currently prepared for long term balloon experiments. In addition, they will be part of the dosimetry suite of the upcoming Matroshka AstroRad Radiation Experiment on the NASA Artemis I mission. This paper gives an overview of the design and the testing of the DLR M-42 systems and provides highlighted results from the MAPHEUS campaigns where the detectors were tested for the first time under space flight conditions. Results clearly show that the system design enables independent measurements starting upon rocket launch due to the built-in accelerometer sensors and provides data for the relevant 6 min of µ-gravity as given for the MAPHEUS missions. These 6 min of the µ-gravity environment at altitudes between 100 and 240 km lead to a total absorbed dose of 1.21 ± 0.15 µGy being equivalent to half a day of radiation background measured with the M-42 in the laboratory at DLR, Cologne, Germany.

2.
J Sleep Res ; 14(4): 393-400, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16364140

ABSTRACT

The aim of the present study was to evaluate time-on-task effects on subjective fatigue in two different tasks of varying monotony during night-time testing (20:00 to 4:00 hours) in a sleep deprivation intervention. The experiment included eight test runs separated by breaks of approximately 20 min. Twenty healthy volunteers performed a driving simulator and the Mackworth clock vigilance task in four of the test runs each. Sequence of tasks was varied across subjects. Before and after each task, subjective sleepiness was assessed by means of the Karolinska sleepiness scale and subjective fatigue was rated on the Samn-Perelli checklist. Fatigue and sleepiness significantly increased over the course of the night. Both tasks led to an increase in fatigue and sleepiness across test runs. However, this time-on-task effect was larger in the vigilance than in the driving simulator task. It is important to note that fatigue and sleepiness in one test run were not influenced by the task performed in the preceding test run, that is there were no cross-over effects. The results suggest that time-on-task effects superimpose circadian and sleep-related factors affecting fatigue. They depend on the monotony of the task and can be quantified by means of a design including separate test runs divided by breaks.


Subject(s)
Fatigue/diagnosis , Adult , Arousal/physiology , Automobile Driving/statistics & numerical data , Computer Simulation , Cross-Over Studies , Disorders of Excessive Somnolence/diagnosis , Disorders of Excessive Somnolence/etiology , Electrophysiology/instrumentation , Fatigue/etiology , Female , Humans , Male , Sleep Deprivation/complications , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...