Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37960026

ABSTRACT

Cytokinins play a relevant role in flower and fruit development and plant yield. Strawberry fruits have a high commercial value, although what is known as the "fruit" is not a "true" botanical fruit because it develops from a non-reproductive organ (receptacle) on which the true botanical fruits (achenes) are found. Given cytokinins' roles in botanical fruits, it is important to understand their participation in the development of a non-botanical or accessory "fruit". Therefore, in this work, the role of cytokinin in strawberry flowers and fruits was investigated by identifying and exploring the expression of homologous genes for different families that participate in the pathway, through publicly available genomic and expression data analyses. Next, trans-zeatin content in developing flowers and receptacles was determined. A high concentration was observed in flower buds and at anthesis and decreased as the fruit approached maturity. Moreover, the spatio-temporal expression pattern of selected CKX genes was evaluated and detected in receptacles at pre-anthesis stages. The results point to an important role and effect of cytokinins in flower and receptacle development, which is valuable both from a biological point of view and to improve yield and the quality of this fruit.

2.
STAR Protoc ; 4(3): 102514, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37573503

ABSTRACT

Here, we present a protocol for immunolabeling of molecules in Arabidopsis tissues. We describe steps for tissue fixation and embedding in resin of microtome-derived sections, immunolabeling using fluorescent and non-fluorescent secondary antibodies, and visualization of cytokinin and auxin molecules. This protocol is suitable to study reproductive structures such as inflorescences, flowers, fruits, and tissue-culture-derived samples. This protocol is useful for studying the distribution of a wide range of molecules including hormones and cell wall components. For complete details on the use and execution of this protocol, please refer to Herrera-Ubaldo et al. (2019).1.


Subject(s)
Arabidopsis , Microtomy , Hormones
3.
Methods Mol Biol ; 2686: 111-127, 2023.
Article in English | MEDLINE | ID: mdl-37540356

ABSTRACT

Sexual reproduction requires the participation of two gametes, female and male. In angiosperms, gametes develop in specialized organs, pollen (containing the male gametes) develops in the stamens, and the ovule (containing the female gamete) develops in the gynoecium. In Arabidopsis thaliana, the female and male sexual organs are found within the same structure called flower, surrounded by the perianth, which is composed of petals and sepals. During flower development, different organs emerge in an established order and throughout their development distinct tissues within each organ are differentiated. All this requires the coordination and synchronization of several biological processes. To achieve this, hormones and genes work together. These components can interact at different levels generating hormonal interplay and both positive and negative feedback loops, which in turn, gives robustness, stability, and flexibility to flower development. Here, we summarize the progress made on elucidating the role of different hormonal pathways during flower development in Arabidopsis thaliana.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Hormones , Reproduction , Flowers/genetics , Gene Expression Regulation, Plant
4.
Methods Mol Biol ; 2686: 553-565, 2023.
Article in English | MEDLINE | ID: mdl-37540377

ABSTRACT

Protein-DNA interactions are determinant of the regulation of gene expression in living organisms. Luminescence studies have been used in a wide range of techniques to identify how gene transcription can be regulated by proteins such as transcription factors (TFs). Despite the great advances in the use of luciferases as reporters in the performance of this mechanism, some of them still have disadvantages that have been tried to be solved by the generation of new luciferases that induce a more stable and perfectly visualizable reaction. NanoLuc is a recently described luciferase that has been characterized by its efficient, stable, and powerful luminescence. These qualities have been considered to create a new and efficient reporter system to detect protein-DNA interactions. In this chapter, we take advantage of NanoLuc and describe its use in a reliable procedure to detect protein-DNA interactions in Nicotiana benthamiana extracts and entire leaves.


Subject(s)
Nicotiana , Transcription Factors , Transcriptional Activation , Luciferases/genetics , Luciferases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Nicotiana/genetics , Nicotiana/metabolism
5.
Plants (Basel) ; 12(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36771679

ABSTRACT

The bHLH transcription factor SPATULA (SPT) has been identified as a regulator during different stages of Arabidopsis development, including the control of leaf size. However, the mechanism via which it performs this function has not been elucidated. To better understand the role of SPT during leaf development, we used a transcriptomic approach to identify putative target genes. We found putative SPT target genes related to leaf development, and to stomata and trichome formation. Furthermore, genes related to anthocyanin biosynthesis. In this work, we demonstrate that SPT is a negative regulator of stomata number and a positive regulator of trichome number. In addition, SPT is required for sucrose-mediated anthocyanin biosynthesis.

6.
Mol Plant ; 16(1): 260-278, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36088536

ABSTRACT

Flowers are composed of organs whose identity is defined by the combinatorial activity of transcription factors (TFs). The interactions between MADS-box TFs and protein complex formation have been schematized in the floral quartet model of flower development. The gynoecium is the flower's female reproductive part, crucial for fruit and seed production and, hence, for reproductive success. After the establishment of carpel identity, many tissues arise to form a mature gynoecium. TFs have been described as regulators of gynoecium development, and some interactions and complexes have been identified. However, broad knowledge about the interactions among these TFs and their participation during development remains scarce. In this study, we used a systems biology approach to understand the formation of a complex reproductive unit-as the gynoecium-by mapping binary interactions between well-characterized TFs. We analyzed almost 4500 combinations and detected more than 250 protein-protein interactions (PPIs), resulting in a process-specific interaction map. Topological analyses suggest hidden functions and novel roles for many TFs. In addition, we observed a close relationship between TFs involved in auxin and cytokinin-signaling pathways and other TFs. Furthermore, we analyzed the network by combining PPI data, expression, and genetic data, which helped us to dissect it into several dynamic spatio-temporal subnetworks related to gynoecium development processes. Finally, we generated an extended PPI network that predicts new players in gynoecium development. Taken together, all these results serve as a valuable resource for the plant community.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Communication , Indoleacetic Acids/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant
7.
iScience ; 25(12): 105627, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36465114

ABSTRACT

Evolution has long been considered to be a conservative process in which new genes arise from pre-existing genes through gene duplication, domain shuffling, horizontal transfer, overprinting, retrotransposition, etc. However, this view is changing as new genes originating from non-genic sequences are discovered in different organisms. Still, rather limited functional information is available. Here, we have identified TWISTED1 (TWT1), a possible de novo-originated protein-coding gene that modifies microtubule arrangement and causes helicoidal growth in Arabidopsis thaliana when its expression is increased. Interestingly, even though TWT1 is a likely recent gene, the lack of TWT1 function affects A. thaliana development. TWT1 seems to have originated from a non-genic sequence. If so, it would be one of the few examples to date of how during evolution de novo genes are integrated into developmental cellular and organismal processes.

8.
Plants (Basel) ; 11(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35956487

ABSTRACT

The WIP family of transcription factors comprises the A1d subgroup of C2H2 zinc finger proteins. This family has six members in Arabidopsis thaliana and most of the known functions have been described by analyzing single knockout mutants. However, it has been shown that WIP2 and its closest paralogs WIP4 and WIP5 have a redundant and essential function in root meristems. It is likely that these and other WIP genes perform more, still unknown, functions. To obtain hints about these other functions, the expression of the six WIP genes was explored. Moreover, phenotypic ana-lyses of overexpressors and wip mutants revealed functions in modulating organ and cell size, stomatal density, and vasculature development.

9.
Plants (Basel) ; 11(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35161219

ABSTRACT

Carbon allocation between vegetative and reproductive tissues impacts cereal grain production. Despite great agricultural importance, sink-source relationships have not been fully characterized at the early reproductive stages in maize. Here, we quantify the accumulation of non-structural carbohydrates and patterns of gene expression in the top internode of the stem and the female inflorescence of maize at the onset of grain filling (reproductive stage R1). Top internode stem and female inflorescence tissues of the Puma maize inbred line were collected at reproductive stage R1 (without pollination) and non-structural carbohydrates were quantified by spectrophotometry. The female inflorescence accumulated starch at higher levels than the top internode of the stem. Global mRNA transcript levels were then evaluated in both tissues by RNA sequencing. Gene expression analysis identified 491 genes differentially expressed between the female inflorescence and the top stem internode. Gene ontology classification of differentially expressed genes showed enrichment for sucrose synthesis, the light-dependent reactions of photosynthesis, and transmembrane transporters. Our results suggest that sugar transporters play a key role in sugar partitioning in the maize stem and reveal previously uncharacterized differences between the female inflorescence and the top internode of the stem at early reproductive stages.

10.
Curr Opin Plant Biol ; 64: 102142, 2021 12.
Article in English | MEDLINE | ID: mdl-34856480

ABSTRACT

Plants produce a myriad of metabolites. Some of them have been regarded for a long time as secondary or specialized metabolites and are considered to have functions mostly in defense and the adaptation of plants to their environment. However, in the last years, new research has shown that these metabolites can also have roles in the regulation of plant growth and development, some acting as signals, through the interaction with hormonal pathways, and some independently of them. These reports provide a glimpse of the functional possibilities that specialized metabolites present in the modulation of plant development and encourage more research in this direction.


Subject(s)
Friends , Plants , Adaptation, Physiological/physiology , Humans , Plant Development , Plants/genetics , Plants/metabolism
11.
Genes (Basel) ; 12(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34209960

ABSTRACT

Transcription factors are important regulators of gene expression. They can orchestrate the activation or repression of hundreds or thousands of genes and control diverse processes in a coordinated way. This work explores the effect of a master regulator of plant development, BOLITA (BOL), in plant metabolism, with a special focus on specialized metabolism. For this, we used an Arabidopsis thaliana line in which the transcription factor activity can be induced. Fingerprinting metabolomic analyses of whole plantlets were performed at different times after induction. After 96 h, all induced replicas clustered as a single group, in contrast with all controls which did not cluster. Metabolomic analyses of shoot and root tissues enabled the putative identification of differentially accumulated metabolites in each tissue. Finally, the analysis of global gene expression in induced vs. non-induced root samples, together with enrichment analyses, allowed the identification of enriched metabolic pathways among the differentially expressed genes and accumulated metabolites after the induction. We concluded that the induction of BOL activity can modify the Arabidopsis metabolome. Future work should investigate whether its action is direct or indirect, and the implications of the metabolic changes for development regulation and bioprospection.


Subject(s)
Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Metabolome , Transcription Factors/metabolism , Arabidopsis , Arabidopsis Proteins/genetics , Gene Expression Regulation, Developmental , Transcription Factors/genetics , Transcriptome
12.
Plant Physiol ; 185(3): 1076-1090, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33793890

ABSTRACT

The gynoecium is the most complex organ formed by the flowering plants. It encloses the ovules, provides a surface for pollen contact and self-incompatibility reactions, allows pollen tube growth, and, post fertilization, develops into the fruit. Consequently, the regulation of gynoecium morphogenesis is complex and appropriate timing of this process in part determines reproductive success. However, little is known about the global control of gynoecium development, even though many regulatory genes have been characterized. Here, we characterized dynamic gene expression changes using laser-microdissected gynoecium tissue from four developmental stages in Arabidopsis. We provide a high-resolution map of global expression dynamics during gynoecium morphogenesis and link these to the gynoecium interactome. We reveal groups of genes acting together early and others acting late in morphogenesis. Clustering of co-expressed genes enables comparisons between the leaf, shoot apex, and gynoecium transcriptomes, allowing the dissection of common and distinct regulators. Furthermore, our results lead to the discovery of genes with putative transcription factor activity (B3LF1, -2, DOFLF1), which, when mutated, lead to impaired gynoecium expansion, illustrating that global transcriptome analyses reveal yet unknown developmental regulators. Our data show that genes encoding highly interacting proteins, such as SEPALLATA3, AGAMOUS, and TOPLESS, are expressed evenly during development but switch interactors over time, whereas stage-specific proteins tend to have fewer interactors. Our analysis connects specific transcriptional regulator activities, protein interactions, and underlying metabolic processes, contributing toward a dynamic network model for gynoecium development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Flowers/genetics , Flowers/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Gene Regulatory Networks/genetics , Gene Regulatory Networks/physiology , Transcription Factors/genetics
13.
PeerJ ; 8: e10074, 2020.
Article in English | MEDLINE | ID: mdl-33033663

ABSTRACT

BACKGROUND: Alkamides are plant-specific bioactive molecules. They are low molecular weight N-substituted α-unsaturated acyl amides that display biological explicit activities in different organisms from bacteria, fungi, insects to mammals and plants. The acyl chain has been proposed to be biosynthesized from a fatty acid; however, this has not been demonstrated yet. Heliopsis longipes (Asteraceae) accumulates in root a C10 alkamide called affinin in its roots, but not in leaves. The closely related species Heliopsis annua does not produce alkamides. To elucidate the biosynthetic pathway of the alkamides acyl chain, a comparative global gene expression analysis contrasting roots and leaves of both species was performed. METHODS: Transcriptomics analysis allowed to identify genes highly expressed in H. longipes roots, but not in tissues and species that do not accumulate alkamides. The first domain searched was the Ketosynthase (KS) domain. The phylogenetic analysis using sequences of the KS domain of FAS and PKS from different organisms, revealed that KS domains of the differentially expressed transcripts in H. longipes roots and the KS domain found in transcripts of Echinacea purpurea, another alkamides producer species, were grouped together with a high bootstrap value of 100%, sharing great similarity. Among the annotated transcripts, we found some coding for the enzymatic domains KS, AT, ACP, DH, OR and TE, which presented higher expression in H. longipes roots than in leaves. The expression level of these genes was further evaluated by qRT-PCR. All unigenes tested showed higher expression in H. longipes roots than in any the other samples. Based on this and considering that the acyl chain of affinin presents unsaturated bonds at even C numbers, we propose a new putative biosynthesis pathway mediated by a four modules polyketide synthase (PKS). RESULTS: The global gene expression analysis led to the selection of a set of candidate genes involved in the biosynthesis of the acyl chain of affinin, suggesting that it may be performed by a non-iterative, partially reductive, four module type I PKS complex (PKS alk) previously thought to be absent from the plant kingdom.

14.
Front Plant Sci ; 11: 568277, 2020.
Article in English | MEDLINE | ID: mdl-33117412

ABSTRACT

The phytohormone cytokinin is crucial for plant growth and development. The site of action of cytokinin in the plant is dependent on the expression of the cytokinin receptors. In Arabidopsis, there are three cytokinin receptors that present some overlap in expression pattern. Functional studies demonstrated that the receptors play highly redundant roles but also have specialized functions. Here, we focus on gynoecium development, which is the female reproductive part of the plant. Cytokinin signaling has been demonstrated to be important for reproductive development, positively affecting seed yield and fruit production. Most of these developmental processes are regulated by cytokinin during early gynoecium development. While some information is available, there is a gap in knowledge on cytokinin function and especially on the cytokinin receptors during early gynoecium development. Therefore, we studied the expression patterns and the role of the cytokinin receptors during gynoecium development. We found that the three receptors are expressed in the gynoecium and that they have redundant and specialized functions.

15.
Genet Mol Biol ; 43(1): e20190221, 2020.
Article in English | MEDLINE | ID: mdl-32105289

ABSTRACT

Auxin regulates a plethora of events during plant growth and development, acting in concert with other phytohormones. YUCCA genes encode flavin monooxygenases that function in tryptophan-dependent auxin biosynthesis. To understand the contribution of the YUCCA4 (YUC4) gene on auxin homeostasis, plant growth and interaction with abscisic acid (ABA) signaling, 35S::YUC4 seedlings were generated, which showed elongated hypocotyls with hyponastic leaves and changes in root system architecture that correlate with enhanced auxin responsive gene expression. Differential expression of PIN1, 2, 3 and 7 auxin transporters was detected in roots of YUC4 overexpressing seedlings compared to the wild-type: PIN1 was down-regulated whereas PIN2, PIN3 and PIN7 were up-regulated. Noteworthy, 35S::YUC4 lines showed enhanced sensitivity to ABA on seed germination and post-embryonic root growth, involving ABI4 transcription factor. The auxin reporter genes DR5::GUS, DR5::GFP and BA3::GUS further revealed that abscisic acid impairs auxin responses in 35S::YUC4 seedlings. Our results indicate that YUC4 overexpression influences several aspects of auxin homeostasis and reveal the critical roles of ABI4 during auxin-ABA interaction in germination and primary root growth.

16.
Anal Chem ; 91(4): 2734-2743, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30636413

ABSTRACT

Secondary metabolites of plants have important biological functions, which often depend on their localization in tissues. Ideally, a fresh untreated material should be directly analyzed to obtain a realistic view of the true sample chemistry. Therefore, there is a large interest for ambient mass-spectrometry-based imaging (MSI) methods. Our aim was to simplify this technology and to find an optimal combination of desorption/ionization principles for a fast ambient MSI of macroscopic plant samples. We coupled a 405 nm continuous wave (CW) ultraviolet (UV) diode laser to a three-dimensionally (3D) printed low-temperature plasma (LTP) probe. By moving the sample with a RepRap-based sampling stage, we could perform imaging of samples up to 16 × 16 cm2. We demonstrate the system performance by mapping mescaline in a San Pedro cactus ( Echinopsis pachanoi) cross section, tropane alkaloids in jimsonweed ( Datura stramonium) fruits and seeds, and nicotine in tobacco ( Nicotiana tabacum) seedlings. In all cases, the anatomical regions of enriched compound concentrations were correctly depicted. The modular design of the laser desorption (LD)-LTP MSI platform, which is mainly assembled from commercial and 3D-printed components, facilitates its adoption by other research groups. The use of the CW-UV laser for desorption enables fast imaging measurements. A complete tobacco seedling with an image size of 9.2 × 15.0 mm2 was analyzed at a pixel size of 100 × 100 µm2 (14 043 mass scans), in less than 2 h. Natural products can be measured directly from native tissues, which inspires a broad use of LD-LTP MSI in plant chemistry studies.


Subject(s)
Alkaloids/analysis , Cactaceae/chemistry , Datura stramonium/chemistry , Nicotiana/chemistry , Nicotine/analysis , Alkaloids/metabolism , Cactaceae/metabolism , Cold Temperature , Datura stramonium/metabolism , Equipment Design , Mescaline/analysis , Mescaline/metabolism , Nicotine/metabolism , Seeds/chemistry , Seeds/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Nicotiana/metabolism
17.
Development ; 146(1)2019 01 02.
Article in English | MEDLINE | ID: mdl-30538100

ABSTRACT

The gynoecium, the female reproductive part of the flower, is key for plant sexual reproduction. During its development, inner tissues such as the septum and the transmitting tract tissue, important for pollen germination and guidance, are formed. In Arabidopsis, several transcription factors are known to be involved in the development of these tissues. One of them is NO TRANSMITTING TRACT (NTT), essential for transmitting tract formation. We found that the NTT protein can interact with several gynoecium-related transcription factors, including several MADS-box proteins, such as SEEDSTICK (STK), known to specify ovule identity. Evidence suggests that NTT and STK control enzyme and transporter-encoding genes involved in cell wall polysaccharide and lipid distribution in gynoecial medial domain cells. The results indicate that the simultaneous loss of NTT and STK activity affects polysaccharide and lipid deposition and septum fusion, and delays entry of septum cells to their normal degradation program. Furthermore, we identified KAWAK, a direct target of NTT and STK, which is required for the correct formation of fruits in Arabidopsis These findings position NTT and STK as important factors in determining reproductive competence.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/embryology , Fruit/embryology , MADS Domain Proteins/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Cell Wall/genetics , Cell Wall/metabolism , Fruit/genetics , Fruit/ultrastructure , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Regulatory Networks , Lipid Metabolism/genetics , MADS Domain Proteins/genetics , Mannans/metabolism , Meristem/metabolism , Mutation/genetics , Pollen Tube/embryology , Pollen Tube/metabolism , Pollen Tube/ultrastructure , Protein Binding , Reproduction , Transcription, Genetic
18.
Front Plant Sci ; 9: 1409, 2018.
Article in English | MEDLINE | ID: mdl-30319671

ABSTRACT

Gene function discovery in plants, as other plant science quests, is aided by tools that image, document, and measure plant phenotypes. Tools that acquire images of plant organs and tissues at the microscopic level have evolved from qualitative documentation tools, to advanced tools where software-assisted analysis of images extracts quantitative information that allows statistical analyses. They are useful to perform morphometric studies that describe plant physical characteristics and quantify phenotypes, aiding gene function discovery. In parallel, non-destructive, versatile, robust, and user friendly technologies have also been developed for surface topography analysis and quality control in the industrial manufacture sector, such as optoelectronic three-dimensional (3D) color microscopes. These microscopes combine optical lenses, electronic image sensors, motorized stages, graphics engines, and user friendly software to allow the visualization and inspection of objects of diverse sizes and shapes from different angles. This allow the integration of different automatically obtained images along the Z axis of an object, into a single image with a large depth-of-field, or a 3D model in color. In this work, we explored the performance of an optoelectronic microscope to study plant morphological phenotypes and plant surfaces in different model species. Furthermore, as a "proof-of-concept," we included the phenotypic characterization (morphometric analyses at the organ level, color, and cell size measurements) of Arabidopsis mutant leaves. We found that the microscope tested is a suitable, practical, and fast tool to routinely and precisely analyze different plant organs and tissues, producing both high-quality, sharp color images and morphometric and color data in real time. It is fully compatible with live plant tissues (no sample preparation is required) and does not require special conditions, high maintenance, nor complex training. Therefore, though barely reported in plant scientific studies, optoelectronic microscopes should emerge as convenient and useful tools for phenotypic characterization in plant sciences.

19.
Sci Rep ; 8(1): 6836, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717220

ABSTRACT

Hormones are an important component in the regulatory networks guiding plant development. Cytokinins are involved in different physiological and developmental processes in plants. In the model plant Arabidopsis thaliana, cytokinin application during gynoecium development produces conspicuous phenotypes. On the other hand, Brassica napus, also known as canola, is a crop plant belonging to the Brassicaceae family, as A. thaliana. This makes B. napus a good candidate to study whether the cytokinin responses observed in A. thaliana are conserved in the same plant family. Here, we observed that cytokinin treatment in B. napus affects different traits of flower and fruit development. It increases ovule and seed number, affects stamen filament elongation and anther maturation, and causes a conspicuous overgrowth of tissue in petals and gynoecia. Furthermore, cytokinin recovers replum development in both wild type B. napus and in the A. thaliana rpl ntt double mutant, in which no replum is visible. These results indicate both conserved and novel responses to cytokinin in B. napus. Moreover, in this species, some cytokinin-induced phenotypes are inherited to the next, untreated generation, suggesting that cytokinins may trigger epigenetic modifications.


Subject(s)
Arabidopsis/growth & development , Benzyl Compounds/pharmacology , Brassica napus/growth & development , Cytokinins/pharmacology , Plant Development/drug effects , Plant Growth Regulators/pharmacology , Purines/pharmacology , Epigenesis, Genetic/drug effects , Inflorescence/growth & development , Lanolin/pharmacology , Multifactorial Inheritance/drug effects , Ovule/growth & development , Phenotype , Plants, Genetically Modified , Reproduction/drug effects , Seeds/growth & development
20.
Trends Plant Sci ; 23(7): 598-612, 2018 07.
Article in English | MEDLINE | ID: mdl-29703667

ABSTRACT

After linear sequences of genomes and epigenomic landscape data, the 3D organization of chromatin in the nucleus is the next level to be explored. Different organisms present a general hierarchical organization, with chromosome territories at the top. Chromatin interaction maps, obtained by chromosome conformation capture (3C)-based methodologies, for eight plant species reveal commonalities, but also differences, among them and with animals. The smallest structures, found in high-resolution maps of the Arabidopsis genome, are single genes. Epigenetic marks (histone modification and DNA methylation), transcriptional activity, and chromatin interaction appear to be correlated, and whether structure is the cause or consequence of the function of interacting regions is being actively investigated.


Subject(s)
Chromosomes, Plant/genetics , Genome, Plant/genetics , Chromatin/genetics , Epigenesis, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...