Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(9): 3247-3252, 2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33586724

ABSTRACT

The use of a novel inorganic nanoscale cluster (Al[(µ-OH)2Co(NH3)4]3(NO3)6) was investigated for its utility as a precursor for AlCoOx films. Mixed-metal aluminum and cobalt oxide thin films were solution deposited from the novel cluster solution via the spin-coating method on Si (100) and quartz substrates. The films were annealed at increasing temperatures up to 800 °C, and characterization of these films via TEM and XRD confirms binary Co3O4 crystalline phase present in an amorphous Al2O3 network. Films are relatively smooth (Rrms < 4 nm), polycrystalline, and demonstrate a tunable optical response dominated by Co3O4 with two electronic transitions.

2.
Environ Toxicol Chem ; 38(12): 2651-2658, 2019 12.
Article in English | MEDLINE | ID: mdl-31441966

ABSTRACT

Recently, monoalkyl oxo-hydroxo tin clusters have emerged as a new class of metal-oxide resist to support the semiconductor industry's transition to extreme ultraviolet (EUV) lithography. Under EUV exposure, these tin-based clusters exhibit higher performance and wider process windows than conventional polymer materials. A promising new monoalkyl precursor, [(BuSn)12 O14 (OH)6 ][OH]2 (BuSn), is still in its infancy in terms of film formation. However, understanding potential environmental effects could significantly affect future development as a commercial product. We synthesized and explored the toxicity of nano-BuSn in the alga Chlamydomonas reinhardtii and the crustacean Daphnia magna at exposure concentrations ranging from 0 to 250 mg/L. Nano-BuSn had no effect on C. reinhardtii growth rate irrespective of concentration, whereas high nanoparticle concentrations (≥100 mg/L) increased D. magna immobilization and mortality significantly. To simulate an end-of-life disposal and leachate contamination, BuSn-coated film wafers were incubated in water at various pH values and temperatures for 14 and 90 d to investigate leaching rates and subsequent toxicity of the leachates. Although small quantities of tin (1.1-3.4% of deposited mass) leached from the wafers, it was insufficient to elicit a toxic response regardless of pH, incubation time, or temperature. The low toxicity of the tin-based thin films suggests that they can be an environmentally friendly addition to the material sets useful for semiconductor manufacturing. Environ Toxicol Chem 2019;38:2651-2658. © 2019 SETAC.


Subject(s)
Chlamydomonas/drug effects , Daphnia/drug effects , Tin/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chlamydomonas/growth & development , Daphnia/growth & development , Oxides/analysis , Oxides/toxicity , Tin/analysis , Water Pollutants, Chemical/analysis
3.
Angew Chem Int Ed Engl ; 56(30): 8776-8779, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28570770

ABSTRACT

Large aqueous ions are interesting because they are useful in materials science (for example to generate thin films) but also because they serve as molecular models for the oxide-aqueous mineral interface where spectroscopy is difficult. Here we show that new clusters of the type M[(µ-OH)2 Co(NH3 )4 ]3 (NO3 )6 (M=Al, Ga) can be synthesized using Werner's century-old cluster as a substitutable framework. We substituted Group 13 metals into the hexol Co[(µ-OH)2 Co(NH3 )4 ]36+ ion to make diamagnetic heterometallic ions. The solid-state structure of the hexol-type derivatives were determined by single-crystal XRD and NMR spectroscopy and confirmed that the solid-state structure persists in solution after dissolution into either D2 O or [D6 ]DMSO. Other compositions besides these diamagnetic ions can undoubtedly be made using a similar approach, which considerably expands the number of stable aqueous heteronuclear ions.

4.
J Am Chem Soc ; 139(15): 5607-5613, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28328207

ABSTRACT

Amorphous metal oxides are central to a variety of technological applications. In particular, indium gallium oxide has garnered attention as a thin-film transistor channel layer material. In this work we examine the structural evolution of indium gallium oxide gel-derived powders and thin films using infrared vibrational spectroscopy, X-ray diffraction, and pair distribution function (PDF) analysis of X-ray total scattering from standard and normal incidence thin-film geometries (tfPDF). We find that the gel-derived powders and films from the same aqueous precursor evolve differently with temperature, forming mixtures of Ga-substituted In2O3 and In-substituted ß-Ga2O3 with different degrees of substitution. X-ray total scattering and PDF analysis indicate that the majority phase for both the powders and films is an amorphous/nanocrystalline ß-Ga2O3 phase, with a minor constituent of In2O3 with significantly larger coherence lengths. This amorphous ß-Ga2O3 phase could not be identified using the conventional Bragg diffraction techniques traditionally used to study crystalline metal oxide thin films. The combination of Bragg diffraction and tfPDF provides a much more complete description of film composition and structure, which can be used to detail the effect of processing conditions and structure-property relationships. This study also demonstrates how structural features of amorphous materials, traditionally difficult to characterize by standard diffraction, can be elucidated using tfPDF.

5.
Dalton Trans ; 46(3): 947-955, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-28009880

ABSTRACT

Rare earth oxide materials, including thin film coatings, are critically important in magnetic, luminescent and microelectric devices, and few substitutes have been discovered with comparable performance. Thin film coatings from solution are almost unknown for rare earth oxides, likely due to their high activity towards hydrolysis which yields poor quality thin films. The hexamer [Ln6(O)(OH)8(H2O)12(NO3)6]2+ is a rare example of a metal-oxo cluster isolated and stabilized without additional supporting organic ligands. Herein we report a new method for both the preparation and stabilization in non-aqueous media, which makes these clusters valuable precursors for solution-processed thin films. Solution characterization (NMR, small-angle X-ray scattering and Raman spectroscopy) in wet organic solvents indicated that the clusters evolve via a fragmentation and reaggregation process. This is especially true for hexamers of the smaller Ln3+-ions: the higher charge density yields higher hydration rates. This process produced an entirely new hexadecameric cluster formulated Y16O3(OH)24(NO3)18(OSMe2)16(OCMe2)2(H2O)4. The new structure represents an intermediate hydrolysis product on the pathway from hexanuclear clusters to metal oxyhydroxide bulk solid. DMSO solvent ligands displace aqua ligands on the cluster and likely explain the additional stability observed for these clusters in organic solvents. The enhanced cluster stability in DMF and DMSO also enables solution-processing methods to create high quality thin films.

6.
Langmuir ; 29(47): 14728-32, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24138003

ABSTRACT

Development of electrocatalysts for the conversion of water to dioxygen is important in a variety of chemical applications. Despite much research in this field, there are still several fundamental issues about the electrocatalysts that need to be resolved. Two such problems are that the catalyst mass loading on the electrode is subject to large uncertainties and the wetted surface area of the catalyst is often unknown and difficult to determine. To address these topics, a cobalt monolayer was prepared on a gold electrode by underpotential deposition and used to probe its efficiency for the oxidation of water. This electrocatalyst was characterized by atomic force microscopy, grazing-incidence X-ray diffraction, and X-ray photoelectron spectroscopy at various potentials to determine if changes occur on the surface during catalysis. An enhancement of current was observed upon addition of PO4(3-) ions, suggesting an effect from surface-bound ligands on the efficiency of water oxidation. At 500 mV overpotential, current densities of 0.20, 0.74, and 2.4 mA/cm(2) for gold, cobalt, and cobalt in PO4(3-) were observed. This approach thus provided electrocatalysts whose surface areas and activity can be accurately determined.

7.
Langmuir ; 25(20): 12217-28, 2009 Oct 20.
Article in English | MEDLINE | ID: mdl-19697906

ABSTRACT

Mixed monolayers of thiol-terminated (T) and methyl-terminated (Me) carboxylic acids on nanocrystalline TiO(2) films underwent dimerization-induced compositional changes. At short reaction times, the compositions of mixed monolayers were kinetically controlled and mirrored the compositions of coadsorption solutions. On time scales up to several hours, well after the establishment of saturation surface coverages, the monolayers relaxed to thermodynamically controlled compositions through the displacement of Me by T. Equilibration was driven by the formation of intermolecular disulfide bonds between thiol groups of adsorbed T, which yielded polydentate dimeric adsorbates that were bound more strongly than monomeric adsorbates to TiO(2). The rate of compositional changes increased with decreasing solvent viscosity and decreasing alkyl chain length of T, suggesting that the rate of adsorption of T to TiO(2) strongly influenced the overall kinetics under certain conditions. Steric bulk within adsorbates and the strength of surface-attachment interactions also influenced the rate of compositional changes. A kinetic model, derived on the basis of Langmuir adsorption and desorption kinetics, accounts for key aspects of the mixed-monolayer compositional changes. The rate-determining step in the overall mechanism involved either the adsorption of T or the formation of disulfide bonds, depending on the conditions under which monolayers were prepared. Our findings illustrate that dimerization and other intermolecular interactions between adsorbates may dramatically influence the composition and terminal functionalization of mixed monolayers.

SELECTION OF CITATIONS
SEARCH DETAIL
...