Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 186(11): 2345-2360.e16, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37167971

ABSTRACT

A functional network of blood vessels is essential for organ growth and homeostasis, yet how the vasculature matures and maintains homeostasis remains elusive in live mice. By longitudinally tracking the same neonatal endothelial cells (ECs) over days to weeks, we found that capillary plexus expansion is driven by vessel regression to optimize network perfusion. Neonatal ECs rearrange positions to evenly distribute throughout the developing plexus and become positionally stable in adulthood. Upon local ablation, adult ECs survive through a plasmalemmal self-repair response, while neonatal ECs are predisposed to die. Furthermore, adult ECs reactivate migration to assist vessel repair. Global ablation reveals coordinated maintenance of the adult vascular architecture that allows for eventual network recovery. Lastly, neonatal remodeling and adult maintenance of the skin vascular plexus are orchestrated by temporally restricted, neonatal VEGFR2 signaling. Our work sheds light on fundamental mechanisms that underlie both vascular maturation and adult homeostasis in vivo.


Subject(s)
Endothelial Cells , Neovascularization, Physiologic , Animals , Mice , Endothelial Cells/physiology , Neovascularization, Physiologic/physiology , Skin , Cell Membrane
2.
Nat Cell Biol ; 23(5): 476-484, 2021 05.
Article in English | MEDLINE | ID: mdl-33958758

ABSTRACT

Organs consist of multiple cell types that ensure proper architecture and function. How different cell types coexist and interact to maintain their homeostasis in vivo remains elusive. The skin epidermis comprises mostly epithelial cells, but also harbours Langerhans cells (LCs) and dendritic epidermal T cells (DETCs). Whether and how distributions of LCs and DETCs are regulated during homeostasis is unclear. Here, by tracking individual cells in the skin of live adult mice over time, we show that LCs and DETCs actively maintain a non-random spatial distribution despite continuous turnover of neighbouring basal epithelial cells. Moreover, the density of epithelial cells regulates the composition of LCs and DETCs in the epidermis. Finally, LCs require the GTPase Rac1 to maintain their positional stability, density and tiling pattern reminiscent of neuronal self-avoidance. We propose that these cellular mechanisms provide the epidermis with an optimal response to environmental insults.


Subject(s)
Epidermal Cells/cytology , Epidermis/metabolism , Skin/cytology , T-Lymphocytes/immunology , Animals , Epidermal Cells/immunology , Epidermis/immunology , Homeostasis/immunology , Homeostasis/physiology , Intercellular Junctions/pathology , Mice, Transgenic , Skin/immunology
3.
J Cell Biol ; 218(10): 3212-3222, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31488583

ABSTRACT

Mutations associated with tumor development in certain tissues can be nontumorigenic in others, yet the mechanisms underlying these different outcomes remains poorly understood. To address this, we targeted an activating Hras mutation to hair follicle stem cells and discovered that Hras mutant cells outcompete wild-type neighbors yet are integrated into clinically normal skin hair follicles. In contrast, targeting the Hras mutation to the upper noncycling region of the skin epithelium leads to benign outgrowths. Follicular Hras mutant cells autonomously and nonautonomously enhance regeneration, which directs mutant cells into continuous tissue cycling to promote integration rather than aberrancy. This follicular tolerance is maintained under additional challenges that promote tumorigenesis in the epidermis, including aging, injury, and a secondary mutation. Thus, the hair follicle possesses a unique, enhanced capacity to integrate and contain Hras mutant cells within both homeostatic and perturbed tissue, demonstrating that in the skin, multiple, distinct mechanisms exist to suppress oncogenic growth.


Subject(s)
Carcinogenesis , Hair Follicle/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Regeneration , ras Proteins/metabolism , Animals , Mice , Mice, Transgenic
4.
Cell ; 175(6): 1620-1633.e13, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30415836

ABSTRACT

Fibroblasts are an essential cellular and structural component of our organs. Despite several advances, the critical behaviors that fibroblasts utilize to maintain their homeostasis in vivo have remained unclear. Here, by tracking the same skin fibroblasts in live mice, we show that fibroblast position is stable over time and that this stability is maintained despite the loss of neighboring fibroblasts. In contrast, fibroblast membranes are dynamic during homeostasis and extend to fill the space of lost neighboring fibroblasts in a Rac1-dependent manner. Positional stability is sustained during aging despite a progressive accumulation of gaps in fibroblast nuclei organization, while membrane occupancy continues to be maintained. This work defines positional stability and cell occupancy as key principles of skin fibroblast homeostasis in vivo, throughout the lifespan of mice, and identifies membrane extension in the absence of migration as the core cellular mechanism to carry out these principles.


Subject(s)
Cell Membrane/metabolism , Cell Nucleus/metabolism , Fibroblasts/metabolism , Homeostasis/physiology , Skin/metabolism , Animals , Cell Membrane/genetics , Cell Nucleus/genetics , Cells, Cultured , Fibroblasts/cytology , Mice , Mice, Transgenic , Skin/cytology
6.
Nat Cell Biol ; 19(2): 155-163, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28248302

ABSTRACT

Tissue repair is fundamental to our survival as tissues are challenged by recurrent damage. During mammalian skin repair, cells respond by migrating and proliferating to close the wound. However, the coordination of cellular repair behaviours and their effects on homeostatic functions in a live mammal remains unclear. Here we capture the spatiotemporal dynamics of individual epithelial behaviours by imaging wound re-epithelialization in live mice. Differentiated cells migrate while the rate of differentiation changes depending on local rate of migration and tissue architecture. Cells depart from a highly proliferative zone by directionally dividing towards the wound while collectively migrating. This regional coexistence of proliferation and migration leads to local expansion and elongation of the repairing epithelium. Finally, proliferation functions to pattern and restrict the recruitment of undamaged cells. This study elucidates the interplay of cellular repair behaviours and consequent changes in homeostatic behaviours that support tissue-scale organization of wound re-epithelialization.

SELECTION OF CITATIONS
SEARCH DETAIL
...