Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol ; 145(6): 749-772, 2023 06.
Article in English | MEDLINE | ID: mdl-37115208

ABSTRACT

TREM2 is an innate immune receptor expressed by microglia in the adult brain. Genetic variation in the TREM2 gene has been implicated in risk for Alzheimer's disease and frontotemporal dementia, while homozygous TREM2 mutations cause a rare leukodystrophy, Nasu-Hakola disease (NHD). Despite extensive investigation, the role of TREM2 in NHD pathogenesis remains poorly understood. Here, we investigate the mechanisms by which a homozygous stop-gain TREM2 mutation (p.Q33X) contributes to NHD. Induced pluripotent stem cell (iPSC)-derived microglia (iMGLs) were generated from two NHD families: three homozygous TREM2 p.Q33X mutation carriers (termed NHD), two heterozygous mutation carriers, one related non-carrier, and two unrelated non-carriers. Transcriptomic and biochemical analyses revealed that iMGLs from NHD patients exhibited lysosomal dysfunction, downregulation of cholesterol genes, and reduced lipid droplets compared to controls. Also, NHD iMGLs displayed defective activation and HLA antigen presentation. This defective activation and lipid droplet content were restored by enhancing lysosomal biogenesis through mTOR-dependent and independent pathways. Alteration in lysosomal gene expression, such as decreased expression of genes implicated in lysosomal acidification (ATP6AP2) and chaperone mediated autophagy (LAMP2), together with reduction in lipid droplets were also observed in post-mortem brain tissues from NHD patients, thus closely recapitulating in vivo the phenotype observed in iMGLs in vitro. Our study provides the first cellular and molecular evidence that the TREM2 p.Q33X mutation in microglia leads to defects in lysosomal function and that compounds targeting lysosomal biogenesis restore a number of NHD microglial defects. A better understanding of how microglial lipid metabolism and lysosomal machinery are altered in NHD and how these defects impact microglia activation may provide new insights into mechanisms underlying NHD and other neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Microglia , Adult , Humans , Microglia/metabolism , Lipid Metabolism/genetics , Loss of Function Mutation , Mutation/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Lysosomes/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Prorenin Receptor
2.
Cell ; 184(17): 4547-4563.e17, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34314701

ABSTRACT

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Subject(s)
Cerebrum/pathology , ELAV-Like Protein 4/genetics , Glutamic Acid/metabolism , Mutation/genetics , Neurons/pathology , Organoids/metabolism , RNA Splicing/genetics , tau Proteins/genetics , Autophagy/drug effects , Autophagy/genetics , Biomarkers/metabolism , Body Patterning/drug effects , Body Patterning/genetics , Cell Death/drug effects , Cell Line , Humans , Hydrazones/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , Morpholines/pharmacology , Neurons/drug effects , Neurons/metabolism , Organoids/drug effects , Organoids/ultrastructure , Phosphorylation/drug effects , Pyrimidines/pharmacology , RNA Splicing/drug effects , Signal Transduction/drug effects , Stress Granules/drug effects , Stress Granules/metabolism , Synapses/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
3.
Mol Psychiatry ; 26(10): 5925-5939, 2021 10.
Article in English | MEDLINE | ID: mdl-32366951

ABSTRACT

Neurofibrillary tangles (NFTs) composed of hyperphosphorylated and misfolded tau protein are a pathological hallmark of Alzheimer's disease and other tauopathy conditions. Tau is predominantly an intraneuronal protein but is also secreted in physiological and pathological conditions. The extracellular tau has been implicated in the seeding and propagation of tau pathology and is the prime target of the current tau immunotherapy. However, truncated tau species lacking the microtubule-binding repeat (MTBR) domains essential for seeding have been shown to undergo active secretion and the mechanisms and functional consequences of the various extracellular tau are poorly understood. We report here that the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, plays an essential role in the lysosomal exocytosis of selected tau species. TFEB loss of function significantly reduced the levels of interstitial fluid (ISF) tau in PS19 mice expressing P301S mutant tau and in conditioned media of mutant tau expressing primary neurons, while the secretion of endogenous wild-type tau was not affected. Mechanistically we found that TFEB regulates the secretion of truncated mutant tau lacking MTBR and this process is dependent on the lysosomal calcium channel TRPML1. Consistent with the seeding-incompetent nature of the truncated tau and supporting the concept that TFEB-mediated lysosomal exocytosis promotes cellular clearance, we show that reduced ISF tau in the absence of TFEB is associated with enhanced intraneuronal pathology and accelerated spreading. Our results support the idea that TFEB-mediated tau exocytosis serves as a clearance mechanism to reduce intracellular tau under pathological conditions and that effective tau immunotherapy should devoid targeting these extracellular tau species.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , tau Proteins , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Disease Models, Animal , Exocytosis , Lysosomes , Mice , Mice, Transgenic , tau Proteins/genetics
4.
Stem Cell Reports ; 13(5): 939-955, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31631020

ABSTRACT

Primary tauopathies are characterized neuropathologically by inclusions containing abnormal forms of the microtubule-associated protein tau (MAPT) and clinically by diverse neuropsychiatric, cognitive, and motor impairments. Autosomal dominant mutations in the MAPT gene cause heterogeneous forms of frontotemporal lobar degeneration with tauopathy (FTLD-Tau). Common and rare variants in the MAPT gene increase the risk for sporadic FTLD-Tau, including progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). We generated a collection of fibroblasts from 140 MAPT mutation/risk variant carriers, PSP, CBD, and cognitively normal controls; 31 induced pluripotent stem cell (iPSC) lines from MAPT mutation carriers, non-carrier family members, and autopsy-confirmed PSP patients; 33 genome engineered iPSCs that were corrected or mutagenized; and forebrain neural progenitor cells (NPCs). Here, we present a resource of fibroblasts, iPSCs, and NPCs with comprehensive clinical histories that can be accessed by the scientific community for disease modeling and development of novel therapeutics for tauopathies.


Subject(s)
Induced Pluripotent Stem Cells/pathology , Tauopathies/pathology , Cell Line , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Editing , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurogenesis , Neurons/metabolism , Neurons/pathology , Tauopathies/genetics , tau Proteins/genetics
5.
J Virol ; 88(1): 110-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24131716

ABSTRACT

UL16 is a tegument protein of herpes simplex virus (HSV) that is conserved among all members of the Herpesviridae, but its function is poorly understood. Previous studies revealed that UL16 is associated with capsids in the cytoplasm and interacts with the membrane protein UL11, which suggested a "bridging" function during cytoplasmic envelopment, but this conjecture has not been tested. To gain further insight, cells infected with UL16-null mutants were examined by electron microscopy. No defects in the transport of capsids to cytoplasmic membranes were observed, but the wrapping of capsids with membranes was delayed. Moreover, clusters of cytoplasmic capsids were often observed, but only near membranes, where they were wrapped to produce multiple capsids within a single envelope. Normal virion production was restored when UL16 was expressed either by complementing cells or from a novel position in the HSV genome. When the composition of the UL16-null viruses was analyzed, a reduction in the packaging of glycoprotein E (gE) was observed, which was not surprising, since it has been reported that UL16 interacts with this glycoprotein. However, levels of the tegument protein VP22 were also dramatically reduced in virions, even though this gE-binding protein has been shown not to depend on its membrane partner for packaging. Cotransfection experiments revealed that UL16 and VP22 can interact in the absence of other viral proteins. These results extend the UL16 interaction network beyond its previously identified binding partners to include VP22 and provide evidence that UL16 plays an important function at the membrane during virion production.


Subject(s)
Simplexvirus/physiology , Viral Proteins/metabolism , Viral Structural Proteins/metabolism , Animals , Cell Line , Genetic Complementation Test , Humans , Protein Binding , Vero Cells
6.
J Virol ; 84(6): 2963-71, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20042500

ABSTRACT

The UL16 protein of herpes simplex virus is capsid associated and was previously identified as a binding partner of the membrane-associated UL11 tegument protein (J. S. Loomis, R. J. Courtney, and J. W. Wills, J. Virol. 77:11417-11424, 2003). In those studies, a less-prominent, approximately 65-kDa binding partner of unknown identity was also observed. Mass spectrometry studies have now revealed this species to be UL21, a tegument protein that has been implicated in the transport of capsids in the cytoplasm. The validity of the mass spectrometry results was tested in a variety of coimmunoprecipitation and glutathione S-transferase pull-down experiments. The data revealed that UL21 and UL16 can form a complex in the absence of other viral proteins, even when the assays used proteins purified from Escherichia coli. Moreover, UL11 was able to pull down UL21 only when UL16 was present, suggesting that all three proteins can form a complex. Deletion analyses revealed that the second half of UL21 (residues 268 to 535) is sufficient for the UL16 interaction and packaging into virions; however, attempts to map a subdomain of UL16 were largely unsuccessful, with only the first 40 (of 373) residues being found to be dispensable. Nevertheless, it is clear that UL16 must have two distinct binding sites, because covalent modification of its free cysteines with N-ethylmaleimide blocked binding to UL11 but not UL21. These findings should prove useful for elucidating the molecular machinery used to transmit a signal into a virion when it attaches to cells, a recently discovered mechanism in which UL16 is a central player.


Subject(s)
Simplexvirus/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Structural Proteins/chemistry , Viral Structural Proteins/metabolism , Animals , Capsid/metabolism , Chlorocebus aethiops , Humans , Mass Spectrometry , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Vero Cells , Viral Proteins/genetics , Viral Structural Proteins/genetics , Virion/metabolism
7.
Virology ; 398(2): 208-13, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20051283

ABSTRACT

The conserved UL16 tegument protein of herpes simplex virus exhibits dynamic capsid-binding properties with a release mechanism that is triggered during initial virus attachment events. In an effort to understand the capsid association and subsequent release of UL16, we sought to define the mechanism by which this protein is packaged into virions. The data presented here support a model for the addition of some UL16 to capsids prior to their arrival at the TGN. UL16 was found on capsids isolated from cells infected with viruses lacking UL36, UL37 or gE/gD, which are defective for budding and accumulate non-enveloped capsids in the cytoplasm. Additionally, membrane-flotation experiments showed that UL16 co-purified with cytoplasmic capsids that are not associated with membranes. Moreover, the amount of UL16 packaged into extracellular particles was severely reduced in the absence of two conserved binding partners, UL21 or UL11.


Subject(s)
Simplexvirus/metabolism , Viral Structural Proteins/metabolism , Virus Assembly , Animals , Capsid/metabolism , Cell Line , Chlorocebus aethiops , Nucleocapsid/metabolism , Vero Cells , Virion/metabolism , Virus Attachment , Virus Release
SELECTION OF CITATIONS
SEARCH DETAIL
...