Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 104(34): 13578-81, 2007 Aug 21.
Article in English | MEDLINE | ID: mdl-17699628

ABSTRACT

Recent data from the Cassini spacecraft have revealed that Enceladus, the 500-km-diameter moon of Saturn, has a southern hemisphere with a distinct arrangement of tectonic features, intense heat flux, and geyser-like plumes. How did the tectonic features form? How is the heat transported from depth? To address these questions, we formulate a simple model that couples the mechanics and thermodynamics of Enceladus and gives a unified explanation of the salient tectonic features, the plumes, and the transport of heat from a source at a depth of tens of kilometers to the surface. Our findings imply that tiny, icy moons can develop complex surficial geomorphologies, high heat fluxes, and geyser-like activity even if they do not have hot, liquid, and/or convecting interiors.

2.
Science ; 314(5806): 1764-6, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17170301

ABSTRACT

We hypothesize that active tectonic processes in the south polar terrain of Enceladus, the 500-kilometer-diameter moon of Saturn, are creating fractures that cause degassing of a clathrate reservoir to produce the plume documented by the instruments on the Cassini spacecraft. Advection of gas and ice transports energy, supplied at depth as latent heat of clathrate decomposition, to shallower levels, where it reappears as latent heat of condensation of ice. The plume itself, which has a discharge rate comparable to Old Faithful Geyser in Yellowstone National Park, probably represents small leaks from this massive advective system.


Subject(s)
Ice , Saturn , Carbon Dioxide , Extraterrestrial Environment , Gases , Mathematics , Methane , Models, Theoretical , Nitrogen , Pressure , Spacecraft , Temperature , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...