Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
JCI Insight ; 9(8)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483534

ABSTRACT

BACKGROUNDCOVID-19 convalescent plasma (CCP) virus-specific antibody levels that translate into recipient posttransfusion antibody levels sufficient to prevent disease progression are not defined.METHODSThis secondary analysis correlated donor and recipient antibody levels to hospitalization risk among unvaccinated, seronegative CCP recipients within the outpatient, double-blind, randomized clinical trial that compared CCP to control plasma. The majority of COVID-19 CCP arm hospitalizations (15/17, 88%) occurred in this unvaccinated, seronegative subgroup. A functional cutoff to delineate recipient high versus low posttransfusion antibody levels was established by 2 methods: (i) analyzing virus neutralization-equivalent anti-Spike receptor-binding domain immunoglobulin G (anti-S-RBD IgG) responses in donors or (ii) receiver operating characteristic (ROC) curve analysis.RESULTSSARS-CoV-2 anti-S-RBD IgG antibody was volume diluted 21.3-fold into posttransfusion seronegative recipients from matched donor units. Virus-specific antibody delivered was approximately 1.2 mg. The high-antibody recipients transfused early (symptom onset within 5 days) had no hospitalizations. A CCP-recipient analysis for antibody thresholds correlated to reduced hospitalizations found a statistical significant association between early transfusion and high antibodies versus all other CCP recipients (or control plasma), with antibody cutoffs established by both methods-donor-based virus neutralization cutoffs in posttransfusion recipients (0/85 [0%] versus 15/276 [5.6%]; P = 0.03) or ROC-based cutoff (0/94 [0%] versus 15/267 [5.4%]; P = 0.01).CONCLUSIONIn unvaccinated, seronegative CCP recipients, early transfusion of plasma units in the upper 30% of study donors' antibody levels reduced outpatient hospitalizations. High antibody level plasma units, given early, should be reserved for therapeutic use.TRIAL REGISTRATIONClinicalTrials.gov NCT04373460.FUNDINGDepartment of Defense (W911QY2090012); Defense Health Agency; Bloomberg Philanthropies; the State of Maryland; NIH (3R01AI152078-01S1, U24TR001609-S3, 1K23HL151826NIH); the Mental Wellness Foundation; the Moriah Fund; Octapharma; the Healthnetwork Foundation; the Shear Family Foundation; the NorthShore Research Institute; and the Rice Foundation.


Subject(s)
Antibodies, Viral , COVID-19 Serotherapy , COVID-19 , Hospitalization , Immunization, Passive , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/therapy , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunization, Passive/methods , Hospitalization/statistics & numerical data , SARS-CoV-2/immunology , Male , Female , Middle Aged , Adult , Immunoglobulin G/blood , Immunoglobulin G/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Double-Blind Method , Aged , Blood Donors/statistics & numerical data , Outpatients
2.
Transfusion ; 64(2): 216-222, 2024 02.
Article in English | MEDLINE | ID: mdl-38130071

ABSTRACT

BACKGROUND: Washing red blood cell (RBC) units mitigates severe allergic transfusion reactions. However, washing reduces the time to expiration and the effective dose. Automated washing is time- and labor-intensive. A shortage of cell processor tubing sets prompted review of medical necessity for washed RBC for patients previously thought to require washing. STUDY DESIGN AND METHODS: A single-center, retrospective study investigated discontinuing wash RBC protocols in chronically transfused adults. In select patients with prior requirements for washing, due to a history of allergic transfusion reactions, trials of unwashed transfusions were performed. Patient demographic, clinical, laboratory, and transfusion data were compiled. The per-unit washing cost was the sum of the tubing set, saline, and technical labor costs. RESULTS: Fifteen patients (median age 34 years interquartile range [IQR] 23-53 years, 46.7% female) were evaluated. These patients had been transfused with a median of 531 washed RBC units (IQR 244-1066) per patient over 12 years (IQR 5-18 years), most commonly for recurrent, non-severe allergic reactions. There were no transfusion reactions with unwashed RBCs aside from one patient with one episode of pruritus and another with recurrent pruritus, which was typical even with washed RBC. We decreased the mean number of washed RBC units per month by 72.9% (104 ± 10 vs. 28.2 ± 25.2; p < .0001) and saved US $100.25 per RBC unit. CONCLUSION: Washing of RBCs may be safely reconsidered in chronically transfused patients without a history of anaphylaxis. Washing should be implemented judiciously due to potential lack of necessity and logistical/operational challenges.


Subject(s)
Erythrocyte Transfusion , Transfusion Reaction , Adult , Humans , Female , Young Adult , Middle Aged , Male , Erythrocyte Transfusion/methods , Retrospective Studies , Erythrocytes , Pruritus
3.
Transfusion ; 63(9): 1639-1648, 2023 09.
Article in English | MEDLINE | ID: mdl-37534607

ABSTRACT

BACKGROUND: COVID-19 convalescent plasma (CCP) is an important therapeutic option for outpatients at high risk of hospitalization from SARS-CoV-2 infection. We assessed the safety of outpatient CCP transfusions administered during clinical trials. STUDY DESIGN AND METHODS: We analyzed data pertaining to transfusion-related reactions from two randomized controlled trials in the U.S. that evaluated the efficacy of CCP versus control plasma in various ambulatory settings. Multivariable logistic regression was used to assess whether CCP was associated with transfusion reactions, after adjusting for potential confounders. RESULTS: The combined study reported 79/1351 (5.9%) adverse events during the transfusion visit, with the majority 62/1351 (4.6%) characterized by mild, allergic-type findings of urticaria, and/or pruritus consistent with minor allergic transfusion reactions; the other reported events were attributed to the patients' underlying disease, COVID-19, or vasovagal in nature. We found no difference in the likelihood of allergic transfusion reactions between those receiving CCP versus control plasma (adjusted odds ratio [AOR], 0.75; 95% CI, 0.43-1.31). Risk of urticaria and/or pruritus increased with a pre-existing diagnosis of asthma (AOR, 2.33; 95% CI, 1.16-4.67). We did not observe any CCP-attributed antibody disease enhancement in participants with COVID-19 or increased risk of infection. There were no life-threatening severe transfusion reactions and no patients required hospitalization related to transfusion-associated complications. DISCUSSION: Outpatient plasma administration was safely performed for nearly 1400 participants. CCP is a safe therapeutic option for outpatients at risk of hospitalization from COVID-19.


Subject(s)
COVID-19 , Transfusion Reaction , Urticaria , Humans , COVID-19/therapy , COVID-19/etiology , COVID-19 Serotherapy , Immunization, Passive/adverse effects , Outpatients , SARS-CoV-2 , Transfusion Reaction/etiology , Urticaria/etiology , Randomized Controlled Trials as Topic
4.
medRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37131659

ABSTRACT

BACKGROUND: The COVID-19 convalescent plasma (CCP) viral specific antibody levels that translate into recipient post-transfusion antibody levels sufficient to prevent disease progression is not defined. METHODS: This secondary analysis correlated donor and recipient antibody levels to hospitalization risk among unvaccinated, seronegative CCP recipients within the outpatient, double blind, randomized clinical trial that compared CCP to control plasma. The majority of COVID-19 CCP arm hospitalizations (15/17, 88%) occurred in this unvaccinated, seronegative subgroup. A functional cutoff to delineate recipient high versus low post-transfusion antibody levels was established by two methods: 1) analyzing virus neutralization-equivalent anti-S-RBD IgG responses in donors or 2) receiver operating characteristic (ROC) analysis. RESULTS: SARS-CoV-2 anti-S-RBD IgG antibody was diluted by a factor of 21.3 into post-transfusion seronegative recipients from matched donor units. Viral specific antibody delivered approximated 1.2 mg. The high antibody recipients transfused early (symptom onset within 5 days) had no hospitalizations. A CCP recipient analysis for antibody thresholds correlated to reduced hospitalizations found a significant association with Fisher's exact test between early and high antibodies versus all other CCP recipients (or control plasma) with antibody cutoffs established by both methods-donor virus neutralization-based cutoff: (0/85; 0% versus 15/276; 5.6%) p=0.03 or ROC based cutoff: (0/94; 0% versus 15/267; 5.4%) p=0.01. CONCLUSION: In unvaccinated, seronegative CCP recipients, early transfusion of plasma units corresponding to the upper 30% of all study donors reduced outpatient hospitalizations. These high antibody level plasma units, given early, should be reserved for therapeutic use.Trial registration: NCT04373460. FUNDING: Defense Health Agency and others.

5.
N Engl J Med ; 386(18): 1700-1711, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35353960

ABSTRACT

BACKGROUND: Polyclonal convalescent plasma may be obtained from donors who have recovered from coronavirus disease 2019 (Covid-19). The efficacy of this plasma in preventing serious complications in outpatients with recent-onset Covid-19 is uncertain. METHODS: In this multicenter, double-blind, randomized, controlled trial, we evaluated the efficacy and safety of Covid-19 convalescent plasma, as compared with control plasma, in symptomatic adults (≥18 years of age) who had tested positive for severe acute respiratory syndrome coronavirus 2, regardless of their risk factors for disease progression or vaccination status. Participants were enrolled within 8 days after symptom onset and received a transfusion within 1 day after randomization. The primary outcome was Covid-19-related hospitalization within 28 days after transfusion. RESULTS: Participants were enrolled from June 3, 2020, through October 1, 2021. A total of 1225 participants underwent randomization, and 1181 received a transfusion. In the prespecified modified intention-to-treat analysis that included only participants who received a transfusion, the primary outcome occurred in 17 of 592 participants (2.9%) who received convalescent plasma and 37 of 589 participants (6.3%) who received control plasma (absolute risk reduction, 3.4 percentage points; 95% confidence interval, 1.0 to 5.8; P = 0.005), which corresponded to a relative risk reduction of 54%. Evidence of efficacy in vaccinated participants cannot be inferred from these data because 53 of the 54 participants with Covid-19 who were hospitalized were unvaccinated and 1 participant was partially vaccinated. A total of 16 grade 3 or 4 adverse events (7 in the convalescent-plasma group and 9 in the control-plasma group) occurred in participants who were not hospitalized. CONCLUSIONS: In participants with Covid-19, most of whom were unvaccinated, the administration of convalescent plasma within 9 days after the onset of symptoms reduced the risk of disease progression leading to hospitalization. (Funded by the Department of Defense and others; CSSC-004 ClinicalTrials.gov number, NCT04373460.).


Subject(s)
COVID-19 , Immunization, Passive , Adult , Ambulatory Care , COVID-19/therapy , Disease Progression , Double-Blind Method , Hospitalization , Humans , Immunization, Passive/adverse effects , Immunization, Passive/methods , Treatment Outcome , United States , COVID-19 Serotherapy
6.
Transfusion ; 62(5): 933-941, 2022 05.
Article in English | MEDLINE | ID: mdl-35352362

ABSTRACT

Convalescent plasma, collected from donors who have recovered from a pathogen of interest, has been used to treat infectious diseases, particularly in times of outbreak, when alternative therapies were unavailable. The COVID-19 pandemic revived interest in the use of convalescent plasma. Large observational studies and clinical trials that were executed during the pandemic provided insight into how to use convalescent plasma, whereby high levels of antibodies against the pathogen of interest and administration early within the time course of the disease are critical for optimal therapeutic effect. Several studies have shown outpatient administration of COVID-19 convalescent plasma (CCP) to be both safe and effective, preventing clinical progression in patients when administered within the first week of COVID-19. The United States Food and Drug Administration expanded its emergency use authorization (EUA) to allow for the administration of CCP in an outpatient setting in December 2021, at least for immunocompromised patients or those on immunosuppressive therapy. Outpatient transfusion of CCP and infusion of monoclonal antibody therapies for a highly transmissible infectious disease introduces nuanced challenges related to infection prevention. Drawing on our experiences with the clinical and research use of CCP, we describe the logistical considerations and workflow spanning procurement of qualified products, infrastructure, staffing, transfusion, and associated management of adverse events. The purpose of this description is to facilitate the efforts of others intent on establishing outpatient transfusion programs for CCP and other antibody-based therapies.


Subject(s)
COVID-19 , COVID-19/therapy , Humans , Immunization, Passive , Outpatients , Pandemics , SARS-CoV-2 , United States , COVID-19 Serotherapy
7.
Vox Sang ; 116(7): 766-773, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33493365

ABSTRACT

BACKGROUND AND OBJECTIVES: ABO blood group may affect risk of SARS-CoV-2 infection and/or severity of COVID-19. We sought to determine whether IgG, IgA and neutralizing antibody (nAb) to SARS-CoV-2 vary by ABO blood group. MATERIALS AND METHODS: Among eligible convalescent plasma donors, ABO blood group was determined via agglutination of reagent A1 and B cells, IgA and IgG were quantified using the Euroimmun anti-SARS-CoV-2 ELISA, and nAb titres were quantified using a microneutralization assay. Differences in titre distribution were examined by ABO blood group using non-parametric Kruskal-Wallis tests. Adjusted prevalence ratios (aPR) of high nAb titre (≥1:160) were estimated by blood group using multivariable modified Poisson regression models that adjusted for age, sex, hospitalization status and time since SARS-CoV-2 diagnosis. RESULTS: Of the 202 potential donors, 65 (32%) were blood group A, 39 (19%) were group B, 13 (6%) were group AB, and 85 (42%) were group O. Distribution of nAb titres significantly differed by ABO blood group, whereas there were no significant differences in anti-spike IgA or anti-spike IgG titres by ABO blood group. There were significantly more individuals with high nAb titre (≥1:160) among those with blood group B, compared with group O (aPR = 1·9 [95%CI = 1·1-3·3], P = 0·029). Fewer individuals had a high nAb titre among those with blood group A, compared with group B (aPR = 0·6 [95%CI = 0·4-1·0], P = 0·053). CONCLUSION: Eligible CCP donors with blood group B may have relatively higher neutralizing antibody titres. Additional studies evaluating ABO blood groups and antibody titres that incorporate COVID-19 severity are needed.


Subject(s)
ABO Blood-Group System , COVID-19 , Antibodies, Viral , Antibody Formation , Blood Donors , COVID-19/therapy , COVID-19 Testing , Humans , Immunization, Passive , SARS-CoV-2 , COVID-19 Serotherapy
8.
medRxiv ; 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34981068

ABSTRACT

BACKGROUND: The efficacy of polyclonal high titer convalescent plasma to prevent serious complications of COVID-19 in outpatients with recent onset of illness is uncertain. METHODS: This multicenter, double-blind randomized controlled trial compared the efficacy and safety of SARS-CoV-2 high titer convalescent plasma to placebo control plasma in symptomatic adults ≥18 years positive for SARS-CoV-2 regardless of risk factors for disease progression or vaccine status. Participants with symptom onset within 8 days were enrolled, then transfused within the subsequent day. The measured primary outcome was COVID-19-related hospitalization within 28 days of plasma transfusion. The enrollment period was June 3, 2020 to October 1, 2021. RESULTS: A total of 1225 participants were randomized and 1181 transfused. In the pre-specified modified intention-to-treat analysis that excluded those not transfused, the primary endpoint occurred in 37 of 589 (6.3%) who received placebo control plasma and in 17 of 592 (2.9%) participants who received convalescent plasma (relative risk, 0.46; one-sided 95% upper bound confidence interval 0.733; P=0.004) corresponding to a 54% risk reduction. Examination with a model adjusting for covariates related to the outcome did not change the conclusions. CONCLUSION: Early administration of high titer SARS-CoV-2 convalescent plasma reduced outpatient hospitalizations by more than 50%. High titer convalescent plasma is an effective early outpatient COVID-19 treatment with the advantages of low cost, wide availability, and rapid resilience to variant emergence from viral genetic drift in the face of a changing pandemic. Trial Registration: ClinicalTrials.gov number, NCT04373460.

9.
Transfusion ; 60(9): 2021-2028, 2020 09.
Article in English | MEDLINE | ID: mdl-32750171

ABSTRACT

BACKGROUND: In 2019, the United States Food and Drug Administration published its final recommendations to mitigate bacterial contamination of platelets. We sought to evaluate our secondary bacterial culture (SBC) strategy in light of those recommendations. STUDY DESIGN AND METHODS: A retrospective analysis was conducted of SBC data (October 2016-2019) at our institution. SBC was performed upon receipt (Day 3 after collection); 5 mL of platelet product was inoculated aseptically into an aerobic bottle and incubated at 35°C for 3 days. For 8 months, a 10-mL inoculum was trialed. No quarantine was applied. All positive cultures underwent Gram staining and repeat culture of the platelet product (if available). A probable true positive was defined as concordant positive culture between the initial and repeat culture. The incidence of probable true- and false-positive cultures were reported descriptively and differences evaluated by sampling volume. RESULTS: Over 3 years, 55 896 platelet products underwent SBC, yielding 30 initial positive results (approx. 1/1863 platelets); 25 (83.3%) signaled within 24 hours of SBC. The rates of probable true positive, false positive, and indeterminate for 5 mL were 0.027% (1/3771), 0.002% (1/45 251) and 0.018% (1/5656), respectively. The respective rates for 10 mL were 0.018% (1/5323), 0.07% (1/1521), and 0%. Seven of eight (87.5%) false-positive SBCs occurred with a 10-mL inoculum. No septic transfusion reactions were reported. CONCLUSION: SBC continues to interdict bacterially contaminated units of platelets. Our findings suggest higher rates of false positivity using large-volume inocula.


Subject(s)
Bacterial Infections , Bacteriological Techniques , Blood Culture , Platelet Transfusion/adverse effects , Sepsis , Transfusion Reaction , Bacterial Infections/blood , Bacterial Infections/etiology , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Blood Platelets , Humans , Retrospective Studies , Sepsis/blood , Sepsis/etiology , Sepsis/microbiology , Sepsis/prevention & control , Transfusion Reaction/blood , Transfusion Reaction/microbiology , Transfusion Reaction/prevention & control , United States
10.
Transfusion ; 60(3): 628-636, 2020 03.
Article in English | MEDLINE | ID: mdl-31957889

ABSTRACT

BACKGROUND: Isohemagglutinins (anti-A and anti-B) mediate hemolytic transfusion reactions, antibody-mediated rejection of solid-organ transplants, and delayed engraftment after stem cell transplant. However, quantification of isohemagglutinins is often labor intensive and operator dependent, limiting availability and interfacility comparisons. We evaluated an automated, solid-phase and agglutination-based antibody titer platform versus manual gel testing. STUDY DESIGN AND METHODS: Plasma samples were obtained from 54 randomly selected patients. Titers were determined by our laboratory's standard assay (manual dilution followed by manual gel testing) and were compared to results obtained on a fully automated blood bank analyzer (Galileo NEO, Immucor). The analyzer determined immunoglobulin G (IgG) antibodies using solid-phase and immunoglobulin M (IgM) antibodies by direct hemagglutination. RESULTS: Isohemagglutinin titers obtained by manual gel versus the automated assay generally (>80%) agreed within one doubling dilution, and always (100%) agreed within two dilutions. Among O samples, the gel titer and the highest titer obtained with the automated assay (either IgG or IgM) were similar in paired, nonparametric analysis (p = 0.06 for anti-A; p = 0.13 for anti-B). Gel titers from group A and group B patients were slightly higher than the highest titer obtained using the automated assay (p = 0.04 for group A; p = 0.009 for group B), although these differences were within the accepted error of measurement. CONCLUSION: Manual and automated methodologies yielded similar isohemagglutinin titers. Separate quantification of IgM and IgG isohemagglutinins via automated titration may yield additional insight into hemolysis, graft survival after ABO-incompatible transplantation, and red blood cell engraftment after ABO-incompatible stem cell transplant.


Subject(s)
Hemagglutinins/metabolism , ABO Blood-Group System/immunology , ABO Blood-Group System/metabolism , Blood Group Incompatibility/immunology , Graft Survival , Hemagglutinins/immunology , Humans , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism
11.
Transfusion ; 59(4): 1291-1299, 2019 04.
Article in English | MEDLINE | ID: mdl-30623459

ABSTRACT

BACKGROUND: Bacterial contamination of platelets remains the leading infectious risk from blood transfusion. Pathogen reduction (PR), point-of-release testing (PORt), and secondary bacterial culture (SBC) have been proposed as alternative risk control strategies, but a comprehensive financial comparison has not been conducted. STUDY DESIGN AND METHODS: A Markov-based decision tree was constructed to model the financial and clinical impact of PR, PORt, and SBC, as well as a baseline strategy involving routine testing only. Hospitals were assumed to acquire leukoreduced apheresis platelets on Day 3 after collection, and, in the base case analysis, expiration would occur at the end of Day 5 (PR and SBC) or 7 (PORt). Monte Carlo simulations assessed the direct medical costs for platelet acquisition, testing, transfusion, and possible complications. Input parameters, including test sensitivity and specificity, were drawn from existing literature, and costs (2018 US dollars) were based on a hospital perspective. RESULTS: The total costs per unit acquired by the hospital under the baseline strategy, PR, PORt, and SBC were $651.45, $827.82, $686.33, and $668.50, respectively. All risk-reduction strategies decreased septic transfusion reactions and associated expenses, with the greatest reductions from PR. PR would add $191.09 in per-unit acquisition costs, whereas PORt and SBC would increase per-unit testing costs by $31.79 and $17.26, respectively. Financial outcomes were sensitive to platelet dating; allowing 7-day storage with SBC would lead to a cost savings of $12.41 per transfused unit. Results remained robust in probabilistic sensitivity analyses. CONCLUSIONS: All three strategies are viable approaches to reducing bacterially contaminated platelet transfusions, although SBC is likely to be the cheapest overall.


Subject(s)
Blood Platelets/microbiology , Disinfection/economics , Models, Economic , Platelet Transfusion/economics , Costs and Cost Analysis , Humans , Monte Carlo Method
12.
Artif Organs ; 43(1): 21-29, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30084490

ABSTRACT

While pediatric HeartWare HVAD application has increased, determining candidacy and timing for initiation of pediatric VAD support has remained a challenge. We present our experience with a systematic approach to HVAD implantation as a bridge to pediatric heart transplantation. We performed a retrospective, single center review of pediatric patients (n = 11) who underwent HVAD implantation between September 2014 and January 2018. Primary endpoints evaluated were survival to heart transplantation, need for right ventricular assist device (RVAD) at any point, ongoing HVAD support, or death. Median patient age was 11 years (range: 3-16). Median BSA was 1.25 m2 (range: 0.56-2.1). Heart failure etiologies requiring support were dilated cardiomyopathy (n = 8), myocarditis (n = 1), congenital mitral valve disease (n = 1), and single ventricle heart failure (n = 1). Median time from cardiac ICU admission for heart failure to HVAD placement was 15 days (range 3-55), based on standardized VAD implantation criteria involving imaging assessment and noncardiac organ evaluation. The majority of patients (91%) were INTERMACS Level 2 at time of implant. Three patients (27%) had CentriMag RVAD placement at time of HVAD implantation. Two of these three patients had successful RVAD explanation within 2 weeks. Median length of HVAD support was 60 days (range 6-405 days). Among the 11 patients, survival during HVAD therapy to date is 91% (10/11) with 9 (82%) bridged to heart transplantation and one (9%) continuing to receive support. Posttransplant survival has been 100%, with median follow-up of 573 days (range 152-1126). A systematic approach to HVAD implantation can provide excellent results in pediatric heart failure management for a variety of etiologies and broad BSA range.


Subject(s)
Heart Failure/surgery , Heart Transplantation , Heart-Assist Devices , Patient Selection , Prosthesis Implantation/standards , Adolescent , Child , Child, Preschool , Female , Heart Failure/diagnostic imaging , Heart Failure/etiology , Heart Failure/mortality , Humans , Male , Prosthesis Implantation/instrumentation , Prosthesis Implantation/methods , Retrospective Studies , Survival Analysis , Time Factors , Treatment Outcome , Waiting Lists/mortality
13.
Transfusion ; 58(8): 1933-1939, 2018 08.
Article in English | MEDLINE | ID: mdl-30153333

ABSTRACT

BACKGROUND: Bacterial contamination and associated septic transfusion reactions (STRs) remain the leading infectious risk to the blood supply. We sought to characterize the risk and clinical presentation of blood culture-positive transfusion reactions (BCPTRs) and STRs at our institution. STUDY DESIGN AND METHODS: A retrospective analysis was conducted of all suspected transfusion reactions reported to the transfusion service at a 1000-bed tertiary academic medical center from January 2009 to September 2016. Routine investigation included review of the clinical presentation, Gram stain, and bacterial culture of residual blood from the transfused product or associated blood bag. BCPTRs were defined by the presence of a positive bacterial culture in the blood product and/or recipient. STRs met definitive Centers for Disease Control and Prevention hemovigilance criteria for transfusion-transmitted infection, with definite imputability and concordant bacterial culture of the blood product and recipient. RESULTS: A total of 688,514 blood products were transfused during the study period, 3170 transfusion reactions were reported, and 18 (0.57%) were BCPTRs of which seven (0.22%) were STRs. Fifteen of 18 (83.3%) BCPTRs and six of seven (85.7%) were associated with transfusion of apheresis platelets. Major symptoms and signs of BCPTRs included chills (67%), fever (61%), and nausea and vomiting (50%). Four of seven (57.1%) STRs were classified as severe or life-threatening. CONCLUSION: BCPTRs are rare yet potentially serious. The signs and symptoms of BCPTRs, and associated STRs, are not specific, posing risk of misclassification. Challenges surrounding reporting and case ascertainment underscore the need for laboratory measures to address residual risk of contamination.


Subject(s)
Bacteriological Techniques/methods , Transfusion Reaction/diagnosis , Academic Medical Centers , Humans , Retrospective Studies , Risk Assessment , Tertiary Care Centers , Transfusion Reaction/epidemiology
14.
Transfusion ; 58(7): 1647-1653, 2018 07.
Article in English | MEDLINE | ID: mdl-29607515

ABSTRACT

BACKGROUND: Bacterial contamination of platelets remains a major transfusion-associated risk despite long-standing safety measures in the United States. We evaluated an approach using secondary bacterial culture (SBC) to contend with residual risk of bacterial contamination. STUDY DESIGN AND METHODS: Phased implementation of SBC was initiated in October 2016 for platelets (all apheresis collected) received at our institution from the blood donor center (Day 3 post collection). Platelet products were sampled aseptically (5 mL inoculated into an aerobic bottle [BacT/ALERT BPA, BioMerieux, Inc.]) by the blood bank staff upon receipt, using a sterile connection device and sampling kit. The platelet sample was inoculated into an aerobic blood culture bottle and incubated at 35°C for 3 days. The cost of SBC was calculated on the basis of consumables and labor costs at time of implementation. RESULTS: In the 13 months following implementation (October 6, 2016, to November 30, 2017), 23,044/24,653 (93.47%) platelet products underwent SBC. A total of eight positive cultures were detected (incidence 1 in 2881 platelet products), seven of which were positive within 24 hours of SBC. Coagulase negative Staphyloccus spp. were identified in four cases. Five of the eight cases were probable true positive (repeat reactive) and interdicted (cost per averted case was US$77,935). The remaining three cases were indeterminate. No septic transfusion reactions were reported during the observation period. CONCLUSION: We demonstrate the feasibility of SBC of apheresis platelets to mitigate bacterial risk. SBC is lower cost than alternative measures (e.g., pathogen reduction and point-of-release testing) and can be integrated into workflow at hospital transfusion services.


Subject(s)
Bacteria/isolation & purification , Blood Platelets/microbiology , Sepsis/microbiology , Bacteriological Techniques , Humans , Platelet Transfusion/adverse effects , Plateletpheresis/adverse effects
15.
Anesth Analg ; 125(3): 967-974, 2017 09.
Article in English | MEDLINE | ID: mdl-28719428

ABSTRACT

BACKGROUND: Hospital-wide massive transfusion protocols (MTPs) primarily designed for trauma patients may lead to excess blood products being prepared for nontrauma patients. This study characterized blood product utilization among distinct trauma and nontrauma MTPs at a large, urban academic medical center. METHODS: A retrospective study of blood product utilization was conducted in patients who required an MTP activation between January 2011 and December 2015 at an urban academic medical center. Trauma MTP containers included 6 red blood cell (RBC) units, 5 plasma units, and 1 unit of apheresis platelets. Nontrauma MTP containers included 6 RBC and 3 plasma units. RESULTS: There were 334 trauma MTP activations, 233 nontrauma MTP activations, and 77 nontrauma MTP activations that subsequently switched to a trauma MTP ("switched activations"). All nontrauma MTP activations were among bleeding patients who did not have a traumatic injury (100% [233/233]). Few patients with a nontrauma activation required ad hoc transfusion of RBC units (1.3% [95% confidence interval {CI}, 0.3%-3.7%]) or plasma (3.4% [95% CI, 1.5%-6.7%]), and only 45.5% (95% CI, 39.0%-52.1%) required ad hoc transfusion of apheresis platelets. Compared to trauma and switched activations, nontrauma activations transfused a lower median number of RBC, plasma, and apheresis platelet units (P < .001 for all comparisons). There was also a lower median number of prepared but unused plasma units for nontrauma activations (3; [interquartile range {IQR}, 3-5]) compared to trauma (7; [IQR, 5-10]; P < .001) and switched activations (8; [IQR, 5-11]; P < .001). The median number of unused apheresis platelet units was 1 (IQR, 1-2) for trauma activations and 0 (IQR, 0-1) for switched activations. There was a high proportion of trauma and switched activations in which all of the prepared apheresis platelet units were unused (28.1% [95% CI, 23.4%-33.3%] and 9.1% [95% CI, 3.7%-17.8%], respectively). CONCLUSIONS: The majority of initial nontrauma MTP activations did not require a switch to a trauma MTP. Patients remaining under a nontrauma MTP activation were associated with a lower number of transfused and unused plasma and apheresis platelet units. Future studies evaluating the use of hospital-wide nontrauma MTPs are warranted since an MTP designed for nontrauma patient populations may yield a key strategy to optimize blood product utilization in comparison to a universal MTP for both trauma and nontrauma patients.


Subject(s)
Academic Medical Centers/methods , Erythrocyte Transfusion/methods , Hospitals, Urban , Plasma Exchange/methods , Platelet Transfusion/methods , Wounds and Injuries/therapy , Blood Transfusion/methods , Humans , Retrospective Studies , Wounds and Injuries/epidemiology
16.
Transfusion ; 50(9): 1887-96, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20456700

ABSTRACT

BACKGROUND: Red blood cell (RBC) product wastage in hospitals is reported to range from 0.1% to 6.7%. Wastage at our institution averaged 4.4% of 63,000 issued RBC products. Data indicated that approximately 87% of wasted RBC units were either individual units that were out of blood bank for more than 30 minutes (dispensed but not administered) or units packed in transport containers that had temperature indicators affixed to each unit. We hypothesized that Lean Sigma methodology could be used to reduce RBC wastage by 50%. STUDY DESIGN AND METHODS: An interdisciplinary hospital team (transfusion medicine, nursing, and anesthesiology) used Lean Sigma methodology as a tool to reduce RBC product wastage, with a focus on container wastage, which was determined to yield the largest impact. Using the five-part Lean Sigma process-define, measure, analyze, improve, and control-the team collected baseline wastage data, identified major factors affecting RBC product wastage, and implemented interventions to reduce amount of wastage. RESULTS: Factors identified as contributors to RBC wastage most amenable to improvement were lack of awareness and training of staff ordering and handling RBC products, management of temperature-validated containers, inconsistent interpretation of RBC temperature indicators, and need for accountability when ordering blood products. Overall RBC product wastage decreased from 4.4% to a sustained rate of less than 2%. This reduction decreased the number of RBC units wasted by approximately 4300 per year, savings approximately $800,000 over the 4-year period of the study. CONCLUSIONS: Lean Sigma methodology was an effective tool for reducing RBC wastage in a large academic hospital.


Subject(s)
Blood Banks/statistics & numerical data , Medical Waste/prevention & control , Process Assessment, Health Care/methods , Efficiency, Organizational , Erythrocytes , Hospitals/statistics & numerical data , Humans , Medical Waste/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...