Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Accid Anal Prev ; 187: 107038, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37084564

ABSTRACT

Stay-at-home orders - imposed to prevent the spread of COVID-19 - drastically changed the way highways operate. Despite lower traffic volumes during these times, the rate of fatal and serious injury crashes increased significantly across the United States due to increased speeding on roads with less traffic congestion and lower levels of speed enforcement. This paper uses a mixed effect binomial regression model to investigate the impact of stay-at-home orders on odds of speeding on urban limited access highway segments in Maine and Connecticut. This paper also establishes a link between traffic density and the odds of speeding. For this purpose, hourly speed and volume probe data were collected on limited access highway segments for the U.S. states of Maine and Connecticut to estimate the traffic density. The traffic density was then combined with the roadway geometric characteristics, speed limit, as well as dummy variables denoting the time of the week, time of the day, COVID-19 phases (before, during and after stay-at-home order), and the interactions between them. Density, represented in the model as Level of Service, was found to be associated with the odds of speeding, with better levels of service such as A, or B (low density) resulting in the higher odds that drivers would speed. We also found that narrower shoulder width could result in lower odds of speeding. Furthermore, we found that during the stay-at-home order, the odds of speeding by more than 10, 15, and 20 mph increased respectively by 54%, 71% and 85% in Connecticut, and by 15%, 36%, and 65% in Maine during evening peak hours. Additionally, one year after the onset of the pandemic, during evening peak hours, the odds of speeding greater than 10, 15, and 20 mph were still 35%, 29%, and 19% greater in Connecticut and 35% 35% and 20% greater in Maine compared to before pandemic.


Subject(s)
Automobile Driving , COVID-19 , Humans , Accidents, Traffic/prevention & control , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , Models, Statistical , Connecticut/epidemiology
2.
Accid Anal Prev ; 177: 106828, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36126400

ABSTRACT

The COVID-19 pandemic caused a significant change in traffic operations and safety. For instance, various U.S. states reported an increase in the rate of fatal and severe injury crashes over this duration. In April and May of 2020, comprehensive stay-at-home orders were issued across the country, including in Maine. These orders resulted in drastic reductions in traffic volume. Additionally, there is anecdotal evidence that speed enforcement had been reduced during pandemic. Drivers responded to these changes by increasing their speed. More importantly, data show that speeding continues to occur, even one year after the onset of the pandemic. This study develops statistical models to quantify the impact of the pandemic on speeding in Maine. We developed models for three rural facility types (i.e., major collectors, minor arterials, and principal arterials) using a mixed effect Binomial regression model and short duration speed and traffic count data collected at continuous count stations in Maine. Our results show that the odds of speeding by more than 15 mph increased by 34% for rural major collectors, 32% for rural minor arterials, and 51% for rural principal arterials (non-Interstates) during the stay-at-home order in April and May of 2020 compared to the same months in 2019. In addition, the odds of speeding by more than 15 mph, in April and May of 2021, one year after the order, were still 27% higher on rural major collectors and 17% higher on rural principal arterials compared to the same months in 2019.


Subject(s)
Automobile Driving , COVID-19 , Accidents, Traffic/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Maine/epidemiology , Pandemics , Rural Population
SELECTION OF CITATIONS
SEARCH DETAIL
...