Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 22(23): 235704, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21490389

ABSTRACT

The electro-optic characteristics of the semi-insulating and n(+)-type GaAs(001) surfaces passivated with n-alkanethiol self-assembled monolayers were investigated using Kelvin probe surface photovoltage (SPV) and photoluminescence (PL) techniques. Referencing the equilibrium surface barrier height established in an earlier report, SPV measurements demonstrated a significant (>100 mV) increase in the non-equilibrium band-bending potential observed under low-level photo-injection. Modeling of the SPV accounts for these observations in terms of a large (>10(4)) decrease in the hole/electron ratio of surface carrier capture cross-sections, which is suggested to result from the electrostatic potential of the interfacial dipole layer formed upon thiol chemisorption. The cross-section effects are verified in the high-injection regime based on carrier transport modeling of the PL enhancement manifested as a reduction of the surface recombination velocity.

2.
Langmuir ; 25(23): 13561-8, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19874009

ABSTRACT

The work function of n-alkanethiol self-assembled monolayers (SAMs) prepared on the GaAs(001) surface was measured using the Kelvin probe technique yielding the SAM 2D dipole layer potential (DLP). Direct n-dependent proportionality between the DLP values and the C-H stretching mode infrared (IR) absorption intensities was observed, which supports a correspondence of reported IR enhancements with the electrostatic properties of the interface. X-ray photoelectron spectroscopy is also used to verify the work function measurements. In addition, the principal components of the refractive index tensor are shown to be n-invariant in the ordered SAM phase. Our results suggest that a local field correction to the transition dipole moment accounts for the observed increase in IR activity through an increase to the electronic polarizability.

SELECTION OF CITATIONS
SEARCH DETAIL
...