Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 12(6)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35741208

ABSTRACT

As COVID-19 transmission control measures are gradually being lifted, a sensitive and rapid diagnostic method for large-scale screening could prove essential for monitoring population infection rates. However, many rapid workflows for SARS-CoV-2 detection and diagnosis are not amenable to the analysis of large-volume samples. Previously, our group demonstrated a technique for SARS-CoV-2 nanoparticle-facilitated enrichment and enzymatic lysis from clinical samples in under 10 min. Here, this sample preparation strategy was applied to pooled samples originating from nasopharyngeal (NP) swabs eluted in viral transport medium (VTM) and saliva samples diluted up to 1:100. This preparation method was coupled with conventional RT-PCR on gold-standard instrumentation for proof-of-concept. Additionally, real-time PCR analysis was conducted using an in-house, ultra-rapid real-time microfluidic instrument paired with an experimentally optimized rapid protocol. Following pooling and extraction from clinical samples, average cycle threshold (CT) values from resultant eluates generally increased as the pooling dilution factor increased; further, results from a double-blind study demonstrated 100% concordance with clinical values. In addition, preliminary data obtained from amplification of eluates prepared by this technique and analyzed using our portable, ultra-rapid real-time microfluidic PCR amplification instrument showed progress toward a streamlined method for rapid SARS-CoV-2 analysis from pooled samples.

2.
Micromachines (Basel) ; 12(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921163

ABSTRACT

To date, most research regarding amino acid detection and quantification in fingermarks relies on spectrometric methods. Herein, the Sakaguchi colorimetric test was adapted to a rotationally-driven microfluidic platform and used to detect and quantify arginine in fingermarks deposited by male and female donors. A red color indicates the presence of arginine in a given sample following the reaction, and the intensity of this color is linearly proportional to the concentration. Objective detection and quantification of arginine were accomplished using image analysis software (freeware) based on this colorimetric result. The mean concentrations obtained in a blind study were 96.4 ± 5.1 µM for samples from female donors and 55.3 ± 5.3 µM for samples from males. These were not statistically different from the literature values of 94.8 µM ± 12.9 µM for females (p = 0.908) and 54.0 ± 12.6 µM for males (p = 0.914), respectively (± SEM in all cases). Conversely, the experimental means from males and female samples were statistically different from each other (p < 0.001). Objective differentiation between male and female fingermark deposits was achieved in a blind study with 93% accuracy. Additionally, the method was compatible both with samples lifted from common surfaces and with magnetically-powdered samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...