Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Tree Physiol ; 44(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38864558

ABSTRACT

Carbon dioxide sequestration from the atmosphere is commonly assessed using the eddy covariance method. Its net flux signal can be decomposed into gross primary production and ecosystem respiration components, but these have seldom been tested against independent methods. In addition, eddy covariance lacks the ability to partition carbon sequestration among individual trees or species within mixed forests. Therefore, we compared gross primary production from eddy covariance versus an independent method based on sap flow and water-use efficiency, as measured by the tissue heat balance method and δ13C of phloem contents, respectively. The latter measurements were conducted on individual trees throughout a growing season in a mixed broadleaf forest dominated by three tree species, namely English oak, narrow-leaved ash and common hornbeam (Quercus robur L., Fraxinus angustifolia Vahl, and Carpinus betulus L., respectively). In this context, we applied an alternative ecophysiological method aimed at verifying the accuracy of a state-of-the-art eddy covariance system while also offering a solution to the partitioning problem. We observed strong agreement in the ecosystem gross primary production estimates (R2 = 0.56; P < 0.0001), with correlation being especially high and nearly on the 1:1 line in the period before the end of July (R2 = 0.85; P < 0.0001). After this period, the estimates of gross primary production began to diverge. Possible reasons for the divergence are discussed, focusing especially on phenology and the limitation of the isotopic data. English oak showed the highest per-tree daily photosynthetic rates among tree species, but the smaller, more abundant common hornbeam contributed most to the stand-level summation, especially early in the spring. These findings provide a rigorous test of the methods and the species-level photosynthesis offers avenues for enhancing forest management aimed at carbon sequestration.


Subject(s)
Forests , Photosynthesis , Trees , Photosynthesis/physiology , Trees/physiology , Quercus/physiology , Quercus/metabolism , Carbon Sequestration , Fraxinus/physiology , Fraxinus/metabolism
2.
New Phytol ; 242(5): 1932-1943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641865

ABSTRACT

Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.


Subject(s)
Carbon , Eucalyptus , Photosynthesis , Trees , Water , Wood , Eucalyptus/physiology , Eucalyptus/metabolism , Carbon/metabolism , Trees/physiology , Trees/metabolism , Water/metabolism , Wood/physiology , Plant Transpiration/physiology , Models, Biological
3.
New Phytol ; 239(6): 2166-2179, 2023 09.
Article in English | MEDLINE | ID: mdl-37148187

ABSTRACT

Nitrogen (N) fertilization increases biomass and soil organic carbon (SOC) accumulation in boreal pine forests, but the underlying mechanisms remain uncertain. At two Scots pine sites, one undergoing annual N fertilization and the other a reference, we sought to explain these responses. We measured component fluxes, including biomass production, SOC accumulation, and respiration, and summed them into carbon budgets. We compared the resulting summations to ecosystem fluxes measured by eddy covariance. N fertilization increased most component fluxes (P < 0.05), especially SOC accumulation (20×). Only fine-root, mycorrhiza, and exudate production decreased, by 237 (SD = 28) g C m-2 yr-1 . Stemwood production increases were ascribed to this partitioning shift, gross primary production (GPP), and carbon-use efficiency, in that order. The methods agreed in their estimates of GPP in both stands (P > 0.05), but the components detected an increase in net ecosystem production (NEP) (190 (54) g C m-2 yr-1 ; P < 0.01) that eddy covariance did not (19 (62) g C m-2 yr-1 ; ns). The pairing of plots, the simplicity of the sites, and the strength of response provide a compelling description of N effects on the C budget. However, the disagreement between methods calls for further paired tests of N fertilization effects in simple forest ecosystems.


Subject(s)
Ecosystem , Pinus sylvestris , Carbon , Trees/physiology , Nitrogen , Soil , Forests , Carbon Dioxide
5.
Plant Cell Environ ; 45(11): 3219-3232, 2022 11.
Article in English | MEDLINE | ID: mdl-35922889

ABSTRACT

Alternative water uptake pathways through leaves and bark complement water supply with interception, fog or dew. Bark water-uptake contributes to embolism-repair, as demonstrated in cut branches. We tested whether bark water-uptake could also contribute to supplement xylem-water for transpiration. We applied bandages injected with 2 H-enriched water on intact upper-canopy branches of Pinus sylvestris and Fagus sylvatica in a boreal and in a temperate forest, in summer and winter, and monitored transpiration and online isotopic composition (δ2 H and δ18 O) of water vapour, before sampling for analyses of δ2 H and δ18 O in tissue waters. Xylem, bark and leaf waters from segments downstream from the bandages were 2 H-enriched whereas δ18 O was similar to controls. Transpiration was positively correlated with 2 H-enrichment. Isotopic compositions of transpiration and xylem water allowed us to calculate isotopic exchange through the bark via vapour exchange, which was negligible in comparison to estimated bark water-uptake, suggesting that water-uptake occurred via liquid phase. Results were consistent across species, forests and seasons, indicating that bark water-uptake may be more ubiquitous than previously considered. We suggest that water taken up through the bark could be incorporated into the transpiration stream, which could imply that sap-flow measurements underestimate transpiration when bark is wet.


Subject(s)
Fagus , Plant Bark , Plant Leaves , Plant Transpiration , Steam , Xylem
6.
Rapid Commun Mass Spectrom ; 36(5): e9232, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34862674

ABSTRACT

RATIONALE: New methods to measure stable isotopes of soil and tree water directly in the field enable us to increase the temporal resolution of obtained data and advance our knowledge on the dynamics of soil and plant water fluxes. Only few field applications exist. However, these are needed to further improve novel methods and hence exploit their full potential. METHODS: We tested the borehole equilibration method in the field and collected in situ and destructive samples of stable isotopes of soil, trunk and root xylem water over a 2.5-month experiment in a tropical dry forest under natural abundance conditions and following labelled irrigation. Water from destructive samples was extracted using cryogenic vacuum extraction. Isotope ratios were determined with IRIS instruments using cavity ring-down spectroscopy both in the field and in the laboratory. RESULTS: In general, timelines of both methods agreed well for both soil and xylem samples. Irrigation labelled with heavy hydrogen isotopes clearly impacted the isotope composition of soil water and one of the two studied tree species. Inter-method deviations increased in consequence of labelling, which revealed their different capabilities to cover spatial and temporal heterogeneities. CONCLUSIONS: We applied the novel borehole equilibration method in a remote field location. Our experiment reinforced the potential of this in situ method for measuring xylem water isotopes in both tree trunks and roots and confirmed the reliability of gas permeable soil probes. However, in situ xylem measurements should be further developed to reduce the uncertainty within the range of natural abundance and hence enable their full potential.


Subject(s)
Deuterium/analysis , Plant Stems/chemistry , Soil/chemistry , Trees/chemistry , Water/chemistry , Xylem/chemistry , Agricultural Irrigation , Biological Transport , Deuterium/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Plant Stems/metabolism , Seasons , Trees/metabolism , Water/metabolism , Xylem/metabolism
7.
New Phytol ; 233(3): 1108-1120, 2022 02.
Article in English | MEDLINE | ID: mdl-34775610

ABSTRACT

Boreal forests undergo a strong seasonal photosynthetic cycle; however, the underlying processes remain incompletely characterized. Here, we present a novel analysis of the seasonal diffusional and biochemical limits to photosynthesis (Anet ) relative to temperature and light limitations in high-latitude mature Pinus sylvestris, including a high-resolution analysis of the seasonality of mesophyll conductance (gm ) and its effect on the estimation of carboxylation capacity ( VCmax ). We used a custom-built gas-exchange system coupled to a carbon isotope analyser to obtain continuous measurements for the estimation of the relevant shoot gas-exchange parameters and quantified the biochemical and diffusional controls alongside the environmental controls over Anet . The seasonality of Anet was strongly dependent on VCmax and the diffusional limitations. Stomatal limitation was low in spring and autumn but increased to 31% in June. By contrast, mesophyll limitation was nearly constant (19%). We found that VCmax limited Anet in the spring, whereas daily temperatures and the gradual reduction of light availability limited Anet in the autumn, despite relatively high VCmax . We describe for the first time the role of mesophyll conductance in connection with seasonal trends in net photosynthesis of P. sylvestris, revealing a strong coordination between gm and Anet , but not between gm and stomatal conductance.


Subject(s)
Pinus sylvestris , Carbon Dioxide/pharmacology , Photosynthesis , Plant Leaves , Seasons , Temperature
8.
Tree Physiol ; 41(1): 63-75, 2021 01 09.
Article in English | MEDLINE | ID: mdl-32864696

ABSTRACT

Several studies have suggested that CO2 transport in the transpiration stream can considerably bias estimates of root and stem respiration in ring-porous and diffuse-porous tree species. Whether this also happens in species with tracheid xylem anatomy and lower sap flow rates, such as conifers, is currently unclear. We infused 13C-labelled solution into the xylem near the base of two 90-year-old Pinus sylvestris L. trees. A custom-built gas exchange system and an online isotopic analyser were used to sample the CO2 efflux and its isotopic composition continuously from four positions along the bole and one upper canopy shoot in each tree. Phloem and needle tissue 13C enrichment was also evaluated at these positions. Most of the 13C label was lost by diffusion within a few metres of the infusion point indicating rapid CO2 loss during vertical xylem transport. No 13C enrichment was detected in the upper bole needle tissues. Furthermore, mass balance calculations showed that c. 97% of the locally respired CO2 diffused radially to the atmosphere. Our results support the notion that xylem CO2 transport is of limited magnitude in conifers. This implies that the concerns that stem transport of CO2 derived from root respiration biases chamber-based estimates of forest carbon cycling may be unwarranted for mature conifer stands.


Subject(s)
Pinus sylvestris , Pinus , Carbon Dioxide , Phloem , Plant Stems , Trees , Xylem
9.
New Phytol ; 229(5): 2535-2547, 2021 03.
Article in English | MEDLINE | ID: mdl-33217000

ABSTRACT

Photosynthetic water-use efficiency (WUE) describes the link between terrestrial carbon (C) and water cycles. Estimates of intrinsic WUE (iWUE) from gas exchange and C isotopic composition (δ13 C) differ due to an internal conductance in the leaf mesophyll (gm ) that is variable and seldom computed. We present the first direct estimates of whole-tree gm , together with iWUE from whole-tree gas exchange and δ13 C of the phloem (δ13 Cph ). We measured gas exchange, online 13 C-discrimination, and δ13 Cph monthly throughout spring, summer, and autumn in Eucalyptus tereticornis grown in large whole-tree chambers. Six trees were grown at ambient temperatures and six at a 3°C warmer air temperature; a late-summer drought was also imposed. Drought reduced whole-tree gm . Warming had few direct effects, but amplified drought-induced reductions in whole-tree gm . Whole-tree gm was similar to leaf gm for these same trees. iWUE estimates from δ13 Cph agreed with iWUE from gas exchange, but only after incorporating gm . δ13 Cph was also correlated with whole-tree 13 C-discrimination, but offset by -2.5 ± 0.7‰, presumably due to post-photosynthetic fractionations. We conclude that δ13 Cph is a good proxy for whole-tree iWUE, with the caveats that post-photosynthetic fractionations and intrinsic variability of gm should be incorporated to provide reliable estimates of this trait in response to abiotic stress.


Subject(s)
Trees , Water , Carbon Dioxide , Carbon Isotopes , Mesophyll Cells , Photosynthesis , Plant Leaves
10.
Plant Cell Environ ; 43(9): 2124-2142, 2020 09.
Article in English | MEDLINE | ID: mdl-32596814

ABSTRACT

Gross primary production (GPP) is a key component of the forest carbon cycle. However, our knowledge of GPP at the stand scale remains uncertain, because estimates derived from eddy covariance (EC) rely on semi-empirical modelling and the assumptions of the EC technique are sometimes not fully met. We propose using the sap flux/isotope method as an alternative way to estimate canopy GPP, termed GPPiso/SF , at the stand scale and at daily resolution. It is based on canopy conductance inferred from sap flux and intrinsic water-use efficiency estimated from the stable carbon isotope composition of phloem contents. The GPPiso/SF estimate was further corrected for seasonal variations in photosynthetic capacity and mesophyll conductance. We compared our estimate of GPPiso/SF to the GPP derived from PRELES, a model parameterized with EC data. The comparisons were performed in a highly instrumented, boreal Scots pine forest in northern Sweden, including a nitrogen fertilized and a reference plot. The resulting annual and daily GPPiso/SF estimates agreed well with PRELES, in the fertilized plot and the reference plot. We discuss the GPPiso/SF method as an alternative which can be widely applied without terrain restrictions, where the assumptions of EC are not met.


Subject(s)
Mesophyll Cells/physiology , Models, Biological , Phloem/chemistry , Taiga , Carbon Cycle , Carbon Isotopes/analysis , Ecosystem , Nitrogen , Phloem/physiology , Photosynthesis , Pinus sylvestris , Plant Transpiration/physiology , Sweden , Trees , Water/metabolism
11.
Front Plant Sci ; 11: 358, 2020.
Article in English | MEDLINE | ID: mdl-32351515

ABSTRACT

Forest water use has been difficult to quantify. One promising approach is to measure the isotopic composition of plant water, e.g., the transpired water vapor or xylem water. Because different water sources, e.g., groundwater versus shallow soil water, often show different isotopic signatures, isotopes can be used to investigate the depths from which plants take up their water and how this changes over time. Traditionally such measurements have relied on the extraction of wood samples, which provide limited time resolution at great expense, and risk possible artifacts. Utilizing a borehole drilled through a tree's stem, we propose a new method based on the notion that water vapor in a slow-moving airstream approaches isotopic equilibration with the much greater mass of liquid water in the xylem. We present two empirical data sets showing that the method can work in practice. We then present a theoretical model estimating equilibration times and exploring the limits at which the approach will fail. The method provides a simple, cheap, and accurate means of continuously estimating the isotopic composition of the source water for transpiration.

12.
Photosynth Res ; 141(1): 53-63, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31123952

ABSTRACT

Mesophyll conductance (gm) is a critical variable for the use of stable carbon isotopes to infer photosynthetic water-use efficiency (WUE). Although gm is similar in magnitude to stomatal conductance (gs), it has been measured less often, especially under field conditions and at high temporal resolution. We mounted an isotopic CO2 analyser on a field photosynthetic gas exchange system to make continuous online measurements of gas exchange and photosynthetic 13C discrimination (Δ13C) on mature Pinus sylvestris trees. This allowed the calculation of gm, gs, net photosynthesis (Anet), and WUE. These measurements highlighted the asynchronous diurnal behaviour of gm and gs. While gs declined from around 10:00, Anet declined first after 12:00, and gm remained near its maximum until 16:00. We suggest that high gm played a role in supporting an extended Anet peak despite stomatal closure. Comparing three models to estimate WUE from ∆13C, we found that a simple model, assuming constant net fractionation during carboxylation (27‰), predicted WUE well, but only for about 75% of the day. A more comprehensive model, accounting explicitly for gm and the effects of daytime respiration and photorespiration, gave reliable estimates of WUE, even in the early morning hours when WUE was more variable. Considering constant, finite gm or gm/gs yielded similar WUE estimates on the diurnal scale, while assuming infinite gm led to overestimation of WUE. These results highlight the potential of high-resolution gm measurements to improve modelling of Anet and WUE and demonstrate that such gm data can be acquired, even under field conditions.


Subject(s)
Circadian Rhythm/physiology , Mesophyll Cells/physiology , Models, Biological , Pinus sylvestris/physiology , Water/metabolism , Carbon Dioxide/metabolism , Carbon Isotopes/metabolism , Chloroplasts/metabolism , Photosynthesis , Plant Stomata/physiology , Vapor Pressure
13.
Tree Physiol ; 39(5): 767-781, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30715506

ABSTRACT

Woody plants vary in their adaptations to drought and shade. For a better prediction of vegetation responses to drought and shade within dynamic global vegetation models, it is critical to group species into functional types with similar adaptations. One of the key challenges is that the adaptations are generally determined by a large number of plant traits that may not be available for a large number of species. In this study, we present two heuristic woody plant groups that were separated using cluster analysis in a three-dimensional trait-environment space based on three key metrics for each species: mean xylem embolism resistance, shade tolerance and habitat aridity. The two heuristic groups separate these species into tolerators and avoiders. The tolerators either rely on their high embolism resistance to tolerate drought in arid habitats (e.g., Juniperus and Prunus) or rely on high shade tolerance to withstand shaded conditions in wet habitats (e.g., Picea, Abies and Acer). In contrast, all avoiders have low embolism resistance and low shade tolerance. In arid habitats, avoiders tend to minimize catastrophic embolism (e.g., most Pinus species) while in wet habitats, they may survive despite low shade tolerance (e.g., Betula, Populus, Alnus and Salix). Because our approach links traits to the environmental conditions, we expect it could be a promising framework for predicting changes in species composition, and therefore ecosystem function, under changing environmental conditions.


Subject(s)
Climate Change , Droughts , Forests , Sunlight , Trees/physiology , Cluster Analysis , Heuristics , Trees/growth & development
14.
Glob Chang Biol ; 22(2): 889-902, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26391334

ABSTRACT

Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca  - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca  - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain.


Subject(s)
Carbon Dioxide/metabolism , Plant Leaves/metabolism , Trees/metabolism , Carbon Isotopes/metabolism , Cycadopsida/metabolism , Magnoliopsida/metabolism , Plant Stomata/metabolism
15.
Proc Natl Acad Sci U S A ; 112(51): 15585-90, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26644588

ABSTRACT

Terrestrial vegetation currently absorbs approximately a third of anthropogenic CO2 emissions, mitigating the rise of atmospheric CO2. However, terrestrial net primary production is highly sensitive to atmospheric CO2 levels and associated climatic changes. In C3 plants, which dominate terrestrial vegetation, net photosynthesis depends on the ratio between photorespiration and gross photosynthesis. This metabolic flux ratio depends strongly on CO2 levels, but changes in this ratio over the past CO2 rise have not been analyzed experimentally. Combining CO2 manipulation experiments and deuterium NMR, we first establish that the intramolecular deuterium distribution (deuterium isotopomers) of photosynthetic C3 glucose contains a signal of the photorespiration/photosynthesis ratio. By tracing this isotopomer signal in herbarium samples of natural C3 vascular plant species, crops, and a Sphagnum moss species, we detect a consistent reduction in the photorespiration/photosynthesis ratio in response to the ∼100-ppm CO2 increase between ∼1900 and 2013. No difference was detected in the isotopomer trends between beet sugar samples covering the 20th century and CO2 manipulation experiments, suggesting that photosynthetic metabolism in sugar beet has not acclimated to increasing CO2 over >100 y. This provides observational evidence that the reduction of the photorespiration/photosynthesis ratio was ca. 25%. The Sphagnum results are consistent with the observed positive correlations between peat accumulation rates and photosynthetic rates over the Northern Hemisphere. Our results establish that isotopomers of plant archives contain metabolic information covering centuries. Our data provide direct quantitative information on the "CO2 fertilization" effect over decades, thus addressing a major uncertainty in Earth system models.


Subject(s)
Carbon Dioxide/metabolism , Photosynthesis , Plants/metabolism , Carbon Isotopes , Deuterium
16.
Plant Cell Environ ; 37(1): 82-100, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23663114

ABSTRACT

A semi-mechanistic forest growth model, 3-PG (Physiological Principles Predicting Growth), was extended to calculate δ(13)C in tree rings. The δ(13)C estimates were based on the model's existing description of carbon assimilation and canopy conductance. The model was tested in two ~80-year-old natural stands of Abies grandis (grand fir) in northern Idaho. We used as many independent measurements as possible to parameterize the model. Measured parameters included quantum yield, specific leaf area, soil water content and litterfall rate. Predictions were compared with measurements of transpiration by sap flux, stem biomass, tree diameter growth, leaf area index and δ(13)C. Sensitivity analysis showed that the model's predictions of δ(13)C were sensitive to key parameters controlling carbon assimilation and canopy conductance, which would have allowed it to fail had the model been parameterized or programmed incorrectly. Instead, the simulated δ(13)C of tree rings was no different from measurements (P > 0.05). The δ(13)C submodel provides a convenient means of constraining parameter space and avoiding model artefacts. This δ(13)C test may be applied to any forest growth model that includes realistic simulations of carbon assimilation and transpiration.


Subject(s)
Abies/growth & development , Models, Biological , Abies/physiology , Biomass , Calibration , Carbon/metabolism , Carbon Isotopes/analysis , Climate , Computer Simulation , Idaho , Photosynthesis/physiology , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Stems/growth & development , Plant Stems/physiology , Plant Transpiration/physiology , Soil/chemistry , Water/physiology
18.
New Phytol ; 200(4): 950-65, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23902460

ABSTRACT

Stable carbon isotope ratios (δ(13) C) of terrestrial plants are employed across a diverse range of applications in environmental and plant sciences; however, the kind of information that is desired from the δ(13) C signal often differs. At the extremes, it ranges between purely environmental and purely biological. Here, we review environmental drivers of variation in carbon isotope discrimination (Δ) in terrestrial plants, and the biological processes that can either damp or amplify the response. For C3 plants, where Δ is primarily controlled by the ratio of intercellular to ambient CO2 concentrations (ci /ca ), coordination between stomatal conductance and photosynthesis and leaf area adjustment tends to constrain the potential environmentally driven range of Δ. For C4 plants, variation in bundle-sheath leakiness to CO2 can either damp or amplify the effects of ci /ca on Δ. For plants with crassulacean acid metabolism (CAM), Δ varies over a relatively large range as a function of the proportion of daytime to night-time CO2 fixation. This range can be substantially broadened by environmental effects on Δ when carbon uptake takes place primarily during the day. The effective use of Δ across its full range of applications will require a holistic view of the interplay between environmental control and physiological modulation of the environmental signal.


Subject(s)
Carbon/metabolism , Environment , Plant Physiological Phenomena , Plants/metabolism , Carbon Isotopes , Photosynthesis
19.
Tree Physiol ; 33(11): 1132-44, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23425689

ABSTRACT

The effects of the past century's increase in atmospheric CO2 concentration ([CO2]) have been recorded in the stable carbon isotope composition (δ(13)C) of the annual growth rings of trees. The isotope record frequently shows increases in photosynthetic CO2 uptake relative to stomatal conductance, which estimates the CO2 concentration gradient across the stomata (ca - ci). This variable, which is one control over the net photosynthetic rate, has been suggested as a homeostatic gas-exchange set point that is easy to estimate from δ(13)C and [CO2]. However, in high-latitude conifer forests, the literature is mixed; some studies show increases in (ca - ci) and others show homeostasis. Here we present leaf and tree-ring δ(13)C data from a controlled experiment that tested factorial combinations of elevated [CO2] (365 and 700 ∝mol mol(-1)) and fertilization on mature Norway spruce (Picea abies (L.) Karst.) trees in northern Sweden. We found first that the leaf carbon pool was contaminated by the current photosynthate in the older leaf cohorts. This is the reverse of the common observation that older photosynthate reserves can be used to produce new tissue; here the older tissue contains recent photosynthate. We found that the tree-ring data lack such contamination and in any case they better integrate over the canopy and the growing season than do leaves. In the second and third years of treatment, elevated [CO2] alone increased (ca - ci) by 38%; when combined with fertilization, it increased (ca - ci) by 60%. The results of this study support the idea that annual rings provide a clearer isotopic signal than do foliage age-classes. The tree-ring data show that inferred (ca - ci) depends not only on [CO2], but also on mineral-nutrient status. The differences in (ca - ci) are sufficiently large to account for the treatment-induced increase in wood-volume production in these stands.


Subject(s)
Carbon Dioxide/physiology , Minerals/metabolism , Picea/physiology , Plant Transpiration , Carbon Isotopes/analysis , Norway , Photosynthesis , Picea/growth & development , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Stomata/growth & development , Plant Stomata/physiology , Seasons , Temperature , Trees , Wood/growth & development , Wood/physiology
20.
Ecol Appl ; 22(1): 154-65, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22471081

ABSTRACT

Projected climate change will affect existing forests, as substantial changes are predicted to occur during their life spans. Species that have ample intraspecific genetic differentiation, such as Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), are expected to display population-specific growth responses to climate change. Using a mixed-effects modeling approach, we describe three-year height (HT) growth response to changes in climate of interior Douglas-fir populations. We incorporate climate information at the population level, yielding a model that is specific to both species and population. We use data from provenance tests from previous studies that comprised 236 populations from Idaho, Montana, and eastern Washington, USA. The most sensitive indicator of climate was the mean temperature of the coldest month. Population maximum HT and HT growth response to changes in climate were dependent on seed source climate. All populations had optimum HT growth when transferred to climates with warmer winters; those originating in sites with the warmest winters were taller across sites and had highest HT growth at transfer distances closest to zero; those from colder climates were shortest and had optimum HT growth when transferred the farthest. Although this differential response damped the height growth differences among populations, cold-climate populations still achieved their maximum growth at lower temperatures than warm-climate populations. The results highlight the relevance of understanding climate change impacts at the population level, particularly in a species with ample genetic variation among populations.


Subject(s)
Climate Change , Ecosystem , Environmental Monitoring , Pseudotsuga/growth & development , Idaho , Models, Biological , Montana , Time Factors , Washington
SELECTION OF CITATIONS
SEARCH DETAIL
...