Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
3.
Cell Rep ; 38(11): 110535, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35294869

ABSTRACT

As central effectors of ubiquitin (Ub)-mediated proteolysis, proteasomes are regulated at multiple levels, including degradation of unwanted or dysfunctional particles via autophagy (termed proteaphagy). In yeast, inactive proteasomes are exported from the nucleus, sequestered into cytoplasmic aggresomes via the Hsp42 chaperone, extensively ubiquitylated, and then tethered to the expanding phagophore by the autophagy receptor Cue5. Here, we demonstrate the need for ubiquitylation driven by the trio of Ub ligases (E3s), San1, Rsp5, and Hul5, which together with their corresponding E2s work sequentially to promote nuclear export and Cue5 recognition. Whereas San1 functions prior to nuclear export, Rsp5 and Hul5 likely decorate aggresome-localized proteasomes in concert. Ultimately, topologically complex Ub chain(s) containing both K48 and K63 Ub-Ub linkages are assembled, mainly on the regulatory particle, to generate autophagy-competent substrates. Because San1, Rsp5, Hul5, Hsp42, and Cue5 also participate in general proteostasis, proteaphagy likely engages a fundamental mechanism for eliminating inactive/misfolded proteins.


Subject(s)
Saccharomyces cerevisiae Proteins , Ubiquitin , Autophagy/physiology , Heat-Shock Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
7.
Plant Cell ; 32(12): 3939-3960, 2020 12.
Article in English | MEDLINE | ID: mdl-33004618

ABSTRACT

Phosphatidylinositol 3-phosphate (PI3P) is an essential membrane signature for both autophagy and endosomal sorting that is synthesized in plants by the class III phosphatidylinositol 3-kinase (PI3K) complex, consisting of the VPS34 kinase, together with ATG6, VPS15, and either VPS38 or ATG14 as the fourth subunit. Although Arabidopsis (Arabidopsis thaliana) plants missing the three core subunits are infertile, vps38 mutants are viable but have aberrant leaf, root, and seed development, Suc sensing, and endosomal trafficking, suggesting that VPS38 and ATG14 are nonredundant. Here, we evaluated the role of ATG14 through a collection of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and T-DNA insertion mutants disrupting the two Arabidopsis paralogs. atg14a atg14b double mutants were relatively normal phenotypically but displayed pronounced autophagy defects, including reduced accumulation of autophagic bodies and cargo delivery during nutrient stress. Unexpectedly, homozygous atg14a atg14b vps38 triple mutants were viable but showed severely compromised rosette development and reduced fecundity, pollen germination, and autophagy, consistent with a need for both ATG14 and VPS38 to fully actuate PI3P biology. However, the triple mutants still accumulated PI3P, but they were hypersensitive to the PI3K inhibitor wortmannin, indicating that the ATG14/VPS38 component is not essential for PI3P synthesis. Collectively, the ATG14/VPS38 mutant collection now permits the study of plants altered in specific aspects of PI3P biology.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Autophagy-Related Proteins/metabolism , Autophagy , Phosphatidylinositol 3-Kinases/metabolism , Vesicular Transport Proteins/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Autophagy-Related Proteins/genetics , Mutation , Phosphatidylinositol 3-Kinases/genetics , Protein Kinase Inhibitors/pharmacology , Protein Transport , Vesicular Transport Proteins/genetics , Wortmannin/pharmacology
8.
J Cell Sci ; 133(21)2020 11 03.
Article in English | MEDLINE | ID: mdl-33033180

ABSTRACT

The core protease (CP) subcomplex of the 26S proteasome houses the proteolytic active sites and assumes a barrel shape comprised of four co-axially stacked heptameric rings formed by structurally related α- and ß-subunits. CP biogenesis typically begins with the assembly of the α-ring, which then provides a template for ß-subunit integration. In eukaryotes, α-ring assembly is partially mediated by two hetero-dimeric chaperones, termed Pba1-Pba2 (Add66) and Pba3-Pba4 (also known as Irc25-Poc4) in yeast. Pba1-Pba2 initially promotes orderly recruitment of the α-subunits through interactions between their C-terminal HbYX or HbF motifs and pockets at the α5-α6 and α6-α7 interfaces. Here, we identified PBAC5 as a fifth α-ring assembly chaperone in Arabidopsis that directly binds the Pba1 homolog PBAC1 to form a trimeric PBAC5-PBAC1-PBAC2 complex. PBAC5 harbors a HbYX motif that docks with a pocket between the α4 and α5 subunits during α-ring construction. Arabidopsis lacking PBAC5, PBAC1 and/or PBAC2 are hypersensitive to proteotoxic, salt and osmotic stresses, and display proteasome assembly defects. Remarkably, whereas PBAC5 is evolutionarily conserved among plants, sequence relatives are also dispersed within other kingdoms, including a scattered array of fungal, metazoan and oomycete species.


Subject(s)
Arabidopsis Proteins/genetics , Molecular Chaperones , Proteasome Endopeptidase Complex , Arabidopsis , Cytoplasm , Molecular Chaperones/genetics , Proteasome Endopeptidase Complex/genetics
10.
Plant Cell ; 32(9): 2699-2724, 2020 09.
Article in English | MEDLINE | ID: mdl-32616663

ABSTRACT

Autophagic recycling of proteins, lipids, nucleic acids, carbohydrates, and organelles is essential for cellular homeostasis and optimal health, especially under nutrient-limiting conditions. To better understand how this turnover affects plant growth, development, and survival upon nutrient stress, we applied an integrated multiomics approach to study maize (Zea mays) autophagy mutants subjected to fixed-carbon starvation induced by darkness. Broad metabolic alterations were evident in leaves missing the core autophagy component ATG12 under normal growth conditions (e.g., lipids and secondary metabolism), while changes in amino acid-, carbohydrate-, and nucleotide-related metabolites selectively emerged during fixed-carbon starvation. Through combined proteomic and transcriptomic analyses, we identified numerous autophagy-responsive proteins, which revealed processes underpinning the various metabolic changes seen during carbon stress as well as potential autophagic cargo. Strikingly, a strong upregulation of various catabolic processes was observed in the absence of autophagy, including increases in simple carbohydrate levels with a commensurate drop in starch levels, elevated free amino acid levels with a corresponding reduction in intact protein levels, and a strong increase in the abundance of several nitrogen-rich nucleotide catabolites. Altogether, this analysis showed that fixed-carbon starvation in the absence of autophagy adjusts the choice of respiratory substrates, promotes the transition of peroxisomes to glyoxysomes, and enhances the retention of assimilated nitrogen.


Subject(s)
Amino Acids/metabolism , Autophagy/physiology , Carbon/metabolism , Zea mays/cytology , Zea mays/metabolism , Carbohydrate Metabolism/genetics , Carbohydrate Metabolism/physiology , Darkness , Gene Expression Regulation, Plant , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Mutation , Plant Leaves/metabolism , Plant Proteins/genetics , Zea mays/genetics
11.
J Exp Bot ; 71(1): 73-89, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31494674

ABSTRACT

Aggrephagy, a type of selective autophagy that sequesters protein aggregates for degradation in the vacuole, is an important protein quality control mechanism, particularly during cell stress. In mammalian cells, aggrephagy and several other forms of selective autophagy are mediated by dedicated cargo receptors such as NEIGHBOR OF BRCA1 (NBR1). Although plant NBR1 homologs have been linked to selective autophagy during biotic stress, it remains unclear how they impact selective autophagy under non-stressed and abiotic stress conditions. Through microscopic and biochemical analysis of nbr1 mutants expressing autophagy markers and an aggregation-prone reporter, we tested the connection between NBR1 and aggrephagy in Arabidopsis. Although NBR1 is not essential for general autophagy, or for the selective clearance of peroxisomes, mitochondria, or the ER, we found that NBR1 is required for the heat-induced formation of autophagic vesicles. Moreover, cytoplasmic puncta containing aggregation-prone proteins, which were rarely observed in wild-type plants, were found to accumulate in nbr1 mutants under both control and heat stress conditions. Given that NBR1 co-localizes with these cytoplasmic puncta, we propose that Arabidopsis NBR1 is a plant aggrephagy receptor essential for maintaining proteostasis under both heat stress and non-stress conditions.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Autophagy/genetics , Carrier Proteins/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism
12.
J Biol Chem ; 294(46): 17570-17592, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31562246

ABSTRACT

The 26S proteasome is an essential protease that selectively eliminates dysfunctional and short-lived regulatory proteins in eukaryotes. To define the composition of this proteolytic machine in plants, we tagged either the core protease (CP) or the regulatory particle (RP) sub-complexes in Arabidopsis to enable rapid affinity purification followed by mass spectrometric analysis. Studies on proteasomes enriched from whole seedlings, with or without ATP needed to maintain the holo-proteasome complex, identified all known proteasome subunits but failed to detect isoform preferences, suggesting that Arabidopsis does not construct distinct proteasome sub-types. We also detected a suite of proteasome-interacting proteins, including likely orthologs of the yeast and mammalian chaperones Pba1, Pba2, Pba3, and Pba4 that assist in CP assembly; Ump1 that helps connect CP half-barrels; Nas2, Nas6, and Hsm3 that assist in RP assembly; and Ecm29 that promotes CP-RP association. Proteasomes from seedlings exposed to the proteasome inhibitor MG132 accumulated assembly intermediates, reflecting partially built proteasome sub-complexes associated with assembly chaperones, and the CP capped with the PA200/Blm10 regulator. Genetic analyses of Arabidopsis UMP1 revealed that, unlike in yeast, this chaperone is essential, with mutants lacking the major UMP1a and UMP1b isoforms displaying a strong gametophytic defect. Single ump1 mutants were hypersensitive to conditions that induce proteotoxic, salt and osmotic stress, and also accumulated several proteasome assembly intermediates, consistent with its importance for CP construction. Insights into the chaperones reported here should enable study of the assembly events that generate the 26S holo-proteasome in Arabidopsis from the collection of 64 or more subunits.


Subject(s)
Arabidopsis/genetics , Molecular Chaperones/genetics , Proteasome Endopeptidase Complex/genetics , Proteomics , Arabidopsis Proteins/genetics , Cysteine Endopeptidases/genetics , Mass Spectrometry , Protein Isoforms/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
13.
Front Mol Biosci ; 6: 40, 2019.
Article in English | MEDLINE | ID: mdl-31231659

ABSTRACT

All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.

14.
Plant Physiol ; 180(4): 1829-1847, 2019 08.
Article in English | MEDLINE | ID: mdl-31113833

ABSTRACT

Stressful environments often lead to protein unfolding and the formation of cytotoxic aggregates that can compromise cell survival. The molecular chaperone heat shock protein (HSP) 101 is a protein disaggregase that co-operates with the small HSP (sHSP) and HSP70 chaperones to facilitate removal of such aggregates and is essential for surviving severe heat stress. To better define how HSP101 protects plants, we investigated the localization and targets of this chaperone in Arabidopsis (Arabidopsis thaliana). By following HSP101 tagged with GFP, we discovered that its intracellular distribution is highly dynamic and includes a robust, reversible sequestration into cytoplasmic foci that vary in number and size among cell types and are potentially enriched in aggregated proteins. Affinity isolation of HSP101 recovered multiple proteasome subunits, suggesting a functional interaction. Consistent with this, the GFP-tagged 26S proteasome regulatory particle non-ATPase (RPN) 1a transiently colocalized with HSP101 in cytoplasmic foci during recovery. In addition, analysis of aggregated (insoluble) proteins showed they are extensively ubiquitylated during heat stress, especially in plants deficient in HSP101 or class I sHSPs, implying that protein disaggregation is important for optimal proteasomal degradation. Many potential HSP101 clients, identified by mass spectrometry of insoluble proteins, overlapped with known stress granule constituents and sHSP-interacting proteins, confirming a role for HSP101 in stress granule function. Connections between HSP101, stress granules, proteasomes, and ubiquitylation imply that dynamic coordination between protein disaggregation and proteolysis is required to survive proteotoxic stress caused by protein aggregation at high temperatures.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Heat-Shock Response/genetics , Heat-Shock Response/physiology , Hot Temperature , Plant Proteins/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Stress, Physiological/genetics , Stress, Physiological/physiology , Transcription Factors/genetics
15.
Cell ; 177(3): 766-781.e24, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30955882

ABSTRACT

During autophagy, vesicle dynamics and cargo recruitment are driven by numerous adaptors and receptors that become tethered to the phagophore through interactions with lipidated ATG8/LC3 decorating the expanding membrane. Most currently described ATG8-binding proteins exploit a well-defined ATG8-interacting motif (AIM, or LC3-interacting region [LIR]) that contacts a hydrophobic patch on ATG8 known as the LIR/AIM docking site (LDS). Here we describe a new class of ATG8 interactors that exploit ubiquitin-interacting motif (UIM)-like sequences for high-affinity binding to an alternative ATG8 interaction site. Assays with candidate UIM-containing proteins together with unbiased screens identified a large collection of UIM-based ATG8 interactors in plants, yeast, and humans. Analysis of a subset also harboring ubiquitin regulatory X (UBX) domains revealed a role for UIM-directed autophagy in clearing non-functional CDC48/p97 complexes, including some impaired in human disease. With this new class of adaptors and receptors, we greatly extend the reach of selective autophagy and identify new factors regulating autophagic vesicle dynamics.


Subject(s)
Autophagy-Related Protein 8 Family/metabolism , Autophagy , Microtubule-Associated Proteins/metabolism , Amino Acid Motifs , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Autophagy-Related Protein 8 Family/chemistry , Binding Sites , Humans , Microtubule-Associated Proteins/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment
16.
Nat Plants ; 4(12): 1056-1070, 2018 12.
Article in English | MEDLINE | ID: mdl-30478358

ABSTRACT

The turnover of cytoplasmic material by autophagic encapsulation and delivery to vacuoles is essential for recycling cellular constituents, especially under nutrient-limiting conditions. To determine how cells/tissues rely on autophagy, we applied in-depth multi-omic analyses to study maize (Zea mays) autophagy mutants grown under nitrogen-replete and -starvation conditions. Broad alterations in the leaf metabolome were evident in plants missing the core autophagy component ATG12, even in the absence of stress, particularly affecting products of lipid turnover and secondary metabolites, which were underpinned by substantial changes in the transcriptome and/or proteome. Cross-comparison of messenger RNA and protein abundances allowed for the identification of organelles, protein complexes and individual proteins targeted for selective autophagic clearance, and revealed several processes controlled by this catabolism. Collectively, we describe a facile multi-omic strategy to survey autophagic substrates, and show that autophagy has a remarkable influence in sculpting eukaryotic proteomes and membranes both before and during nutrient stress.


Subject(s)
Autophagy-Related Protein 12/metabolism , Autophagy , Metabolome , Nitrogen/deficiency , Proteome , Transcriptome , Zea mays/metabolism , Autophagy-Related Protein 12/genetics , Lipid Metabolism , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism , Secondary Metabolism , Stress, Physiological , Vacuoles/metabolism , Zea mays/genetics
17.
Autophagy ; 14(11): 2029-2031, 2018.
Article in English | MEDLINE | ID: mdl-30204036

ABSTRACT

Autophagic degradation of proteasomes (termed proteaphagy) is a conserved mechanism by which cells eliminate excess or damaged particles. This clearance is induced rapidly when organisms are starved for nitrogen and, because proteasomes are highly abundant, their breakdown likely makes an important contribution to the amino acid pools necessary for survival. By contrast, our recent studies found that proteasomes are not degraded in response to carbon starvation, even though bulk macroautophagy is similarly activated. Instead, carbon starvation induces sequestration of proteasomes into membrane-less cytoplasmic condensates previously termed proteasome storage granules (PSGs), which protect proteasomes from autophagic degradation. Preserving proteasomes in PSGs enhances the ability of yeast cells to recover from a variety of stresses, implying that rapid remobilization of stored proteasomes when conditions improve is advantageous to cell fitness. Consequently, the choice of whether to save or degrade proteasomes can profoundly impact cell survival.


Subject(s)
Autophagy , Saccharomyces cerevisiae Proteins , Carbon , Cell Survival , Homeostasis , Proteasome Endopeptidase Complex , Saccharomyces cerevisiae
18.
Plant Sci ; 274: 146-152, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30080598

ABSTRACT

Autophagy is a highly conserved pathway in eukaryotes that promotes nutrient recycling and cellular homeostasis through the degradation of excess or damaged cytoplasmic constituents. In plants, autophagy is increasingly recognized as a key contributor to development, reproduction, metabolism, leaf senescence, endosperm and grain development, pathogen defense, and tolerance to abiotic and biotic stresses. Characterizing the functional transcriptomic, proteomic, and metabolomic networks relating to autophagy in plants subjected to various extra- and intra-cellular stimuli may help to identify components associated with the pathway. As such, the integration of multi-omics approaches (i.e., transcriptomics, proteomics and metabolomics), along with cellular, genetic and functional analyses, could provide a global perspective regarding the effects of autophagy on plant metabolism, development and stress responses. In this mini-review, recent research progress in plant autophagy is discussed, highlighting the importance of high-throughput omics approaches for defining the underpinning molecular mechanisms of autophagy and understanding its associated regulatory network.


Subject(s)
Autophagy/physiology , Plant Physiological Phenomena , Gene Expression Profiling , Metabolomics , Plants/metabolism , Proteomics , Transcriptome
19.
Elife ; 72018 04 06.
Article in English | MEDLINE | ID: mdl-29624167

ABSTRACT

26S proteasome abundance is tightly regulated at multiple levels, including the elimination of excess or inactive particles by autophagy. In yeast, this proteaphagy occurs upon nitrogen starvation but not carbon starvation, which instead stimulates the rapid sequestration of proteasomes into cytoplasmic puncta termed proteasome storage granules (PSGs). Here, we show that PSGs help protect proteasomes from autophagic degradation. Both the core protease and regulatory particle sub-complexes are sequestered separately into PSGs via pathways dependent on the accessory proteins Blm10 and Spg5, respectively. Modulating PSG formation, either by perturbing cellular energy status or pH, or by genetically eliminating factors required for granule assembly, not only influences the rate of proteasome degradation, but also impacts cell viability upon recovery from carbon starvation. PSG formation and concomitant protection against proteaphagy also occurs in Arabidopsis, suggesting that PSGs represent an evolutionarily conserved cache of proteasomes that can be rapidly re-mobilized based on energy availability.


Subject(s)
Autophagy , Carbon/deficiency , Cytoplasmic Granules/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Nitrogen/metabolism , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin/metabolism , Ubiquitination
20.
Annu Rev Plant Biol ; 69: 173-208, 2018 04 29.
Article in English | MEDLINE | ID: mdl-29539270

ABSTRACT

Plants have evolved sophisticated mechanisms to recycle intracellular constituents, which are essential for developmental and metabolic transitions; for efficient nutrient reuse; and for the proper disposal of proteins, protein complexes, and even entire organelles that become obsolete or dysfunctional. One major route is autophagy, which employs specialized vesicles to encapsulate and deliver cytoplasmic material to the vacuole for breakdown. In the past decade, the mechanics of autophagy and the scores of components involved in autophagic vesicle assembly have been documented. Now emerging is the importance of dedicated receptors that help recruit appropriate cargo, which in many cases exploit ubiquitylation as a signal. Although operating at a low constitutive level in all plant cells, autophagy is upregulated during senescence and various environmental challenges and is essential for proper nutrient allocation. Its importance to plant metabolism and energy balance in particular places autophagy at the nexus of robust crop performance, especially under suboptimal conditions.


Subject(s)
Autophagy , Endocytosis , Models, Biological , Plant Cells/metabolism , Plant Development , Vacuoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...