Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 100(21): 5045-50, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19540755

ABSTRACT

Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this paper is to show that flax shive and cotton gin waste can serve as a precursor for activated carbon that can be used for adsorption of trichloroethylene (TCE) from both the liquid and gas phases. Testing was conducted on carbon activated with phosphoric acid or steam. The results show that activated carbon made from flax shive performed better than select commercial activated carbons, especially at higher TCE concentrations. The activation method employed had little effect on TCE adsorption in gas or vapor phase studies but liquid phase studies suggested that steam activation is slightly better than phosphoric acid activation. As expected, the capacity for the activated carbons depended on the fluid phase equilibrium concentration. At a fluid concentration of 2 mg of TCE/L of fluid, the capacity of the steam activated carbon made from flax shive was similar at 64 and 80 mg TCE/g of carbon for the vapor and liquid phases, respectively. Preliminary cost estimates suggest that the production costs of such carbons are $1.50 to $8.90 per kg, depending on activation method and precursor material; steam activation was significantly less expensive than phosphoric acid activation.


Subject(s)
Charcoal/chemistry , Environment , Flax/chemistry , Gossypium/chemistry , Industrial Waste , Trichloroethylene/isolation & purification , Adsorption , Agriculture , Biodegradation, Environmental , Charcoal/economics , Gases/chemistry , Surface Properties , Temperature , Water/chemistry
2.
Water Res ; 40(13): 2541-8, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16764901

ABSTRACT

Ion exchange resins commonly have a single functionality for either cations or anions. Resins that have a dual functionality for both cations and anions are uncommon. The objective of this study was to create dual-functional ion exchange resins derived from soybean hulls, sugarcane bagasse and corn stover. Dual-functional resins were prepared by two separate two-step processes. In the first two-step process, by-products were reacted with a solution of citric acid in order to impart additional negative charge, and then reacted with the cross-linking reagent dimethyloldihydroxyethylene urea (DMDHEU) and a quaternary amine (choline chloride) to add positive charge to the lignocellulosic material. In the second two-step process, the order of reaction was reversed, with positive charge added first, followed by the addition of negative charge. These combined reactions added both cationic and anionic character to the by-products as evidenced by the increased removal from solution of copper (Cu(2+)) cation and the chromate (CrO(4)(2-)) anion compared to unmodified by-products. The order of reaction appeared to slightly favor the functionality that was added last. That is, if negative charge was added last, the resulting resin sequestered more copper ion than a comparable resin where the negative charge was added first and vice-versa. Cu(2+) and CrO(4)(2-) were used as marker ions in a solution that contained both competing cations and anions. The dual-functional resins adsorbed as much as or more of the marker ions compared to commercial cation or anion exchange resins used for comparison. None of the commercial resins exhibited dual-functional properties to the same extent as the by-product-based resins.


Subject(s)
Adsorption , Agrochemicals/chemistry , Chromates/chemistry , Copper/chemistry , Ion Exchange Resins/chemical synthesis , Binding, Competitive , Cellulose/chemistry , Citric Acid/chemistry , Industrial Waste , Ion Exchange Resins/economics , Models, Biological , Glycine max/chemistry , Waste Products , Water Pollutants, Chemical , Water Purification/economics , Water Purification/methods
3.
J Environ Manage ; 78(2): 157-62, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16144735

ABSTRACT

The objectives of this study were the chemical modification of readily available, low-cost agricultural by-products to anion exchange resins and the selection of the best modified by-product for further use in anion removal. Resins were prepared through the quaternization of a series of 12 agricultural by-products with N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHMAC). Phosphate ion adsorption assays were conducted at pH 7 in order to compare adsorption properties among the by-products. Quaternized corn stover showed the highest phosphorus adsorption at 0.66 mmole/g. Since corn stover exhibited the best uptake of phosphate ion, it was compared to a commercially available, cellulose-based anion exchange resin. Additionally, adsorption capacities of quaternized corn stover for arsenate, chromate, and selenate were evaluated and adsorption efficiencies were determined in simulated wastewater samples. Our results indicate that modified corn stover demonstrates good adsorption uptake for arsenate and selenate and especially for chromate.


Subject(s)
Anion Exchange Resins/chemistry , Crops, Agricultural , Quaternary Ammonium Compounds/chemistry , Waste Products , Water Purification/methods , Adsorption , Agriculture , Arsenic/chemistry , Cellulose , Chromium/chemistry , Lignin/analysis , Phosphates/chemistry , Proteins/analysis , Selenium/chemistry , Water Pollutants, Chemical , Zea mays
4.
Bioresour Technol ; 97(18): 2266-70, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16364633

ABSTRACT

Agricultural by-products, such as peanut shells, contribute large quantities of lignocellulosic waste to the environment each growing season; but few, if any, value-added uses exist for their disposal. The objective of this study was to convert peanut shells to activated carbons for use in adsorption of select metal ions, namely, cadmium (Cd2+), copper (Cu2+), lead (Pb2+), nickel (Ni2+) and zinc (Zn2+). Milled peanut shells were pyrolyzed in an inert atmosphere of nitrogen gas, and then activated with steam at different activation times. Following pyrolysis and activation, the carbons underwent air oxidation. The prepared carbons were evaluated either for adsorption efficiency or adsorption capacity; and these parameters were compared to the same parameters obtained from three commercial carbons, namely, DARCO 12x20, NORIT C GRAN and MINOTAUR. One of the peanut shell-based carbons had metal ion adsorption efficiencies greater than two of the three commercial carbons but somewhat less than but close to Minotaur. This study demonstrates that peanut shells can serve as a source for activated carbons with metal ion-removing potential and may serve as a replacement for coal-based commercial carbons in applications that warrant their use.


Subject(s)
Arachis/metabolism , Charcoal/chemical synthesis , Metals, Heavy/pharmacokinetics , Adsorption , Hot Temperature , Steam
5.
Water Environ Res ; 78(12): 2324-9, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17243231

ABSTRACT

The conversion of municipal sludge and poultry manure to activated carbon results in a significant ash fraction that contains several different anions and cations. The objectives of this study were to determine whether the select ions are released or leached from virgin carbon into the sorption medium at different pH values. Activated carbon was placed in solutions of pH 1, 5, or 7, and the leaching of six cations (cadmium, chromium, copper, nickel, lead, and zinc) and two anions (arsenate and selenate) was recorded. Considerable quantities of zinc and copper were removed at pH 1 from all carbon sources. However, the amounts leached at pH 5 and 7 were small or undetectable. Our results indicate that leaching or desorption from carbons made from municipal sludge or poultry manure is pH-dependent and occurs readily under highly acidic conditions but minimally under pH conditions typically seen in contaminated water or wastewater.


Subject(s)
Carbon/chemistry , Manure/analysis , Metals, Heavy/chemistry , Sewage/analysis , Adsorption , Animals , Arsenic/analysis , Arsenic/chemistry , Carbon/analysis , Hydrogen-Ion Concentration , Metals, Heavy/analysis , Nitrogen/analysis , Phosphorus/analysis , Poultry , Sulfur/analysis
6.
Waste Manag ; 25(7): 726-32, 2005.
Article in English | MEDLINE | ID: mdl-16009307

ABSTRACT

The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.


Subject(s)
Carbon/chemistry , Manure , Waste Management/methods , Water Purification/methods , Adsorption , Animals , Copper/chemistry , Manure/analysis , Surface Properties , Time Factors , Turkeys
7.
Water Res ; 39(13): 2869-76, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15993923

ABSTRACT

The use of cellulose-containing agricultural by-products modified with the cross-linking reagent dimethyloldihydroxyethylene urea (DMDHEU) and the quaternary amine, choline chloride, as anion exchange resins, has not been reported. The objective of the present study was to convert the readily available by-products, soybean hulls, sugarcane bagasse and corn stover to functional anion exchange resins using DMDHEU and choline chloride. Optimization of the modification method was achieved using soybean hulls as a substrate. The optimized method was additionally used to modify sugarcane bagasse and corn stover. Adsorption efficiency results with chromate ion showed that modification with both DMDHEU and choline chloride was required for the highest efficiencies. Adsorption capacities of the modified by-products were determined using chromate ion and found to be 1.97, 1.61 and 1.12 mmol/g for sugarcane bagasse, corn stover and soybean hulls, respectively. Competitive adsorption studies were conducted at 10 and 50 times US Environmental Protection Agency (US EPA) limits for arsenic, chromium and selenium in a simulated wastewater at pH 7. The results showed preferential adsorption of chromate ion over arsenate or selenate ion. Estimated product costs for the three resins ranged from $0.88/kg to $0.99/kg, which was considerably lower than the market costs for the two commercial anion exchange resins QA-52 and IRA-400 also used in this study. DMDHEU/choline chloride modification of the three by-products produced an anion exchange resin with a high capacity to adsorb chromate ion singly or competitively in the presence of other anions from aqueous solutions.


Subject(s)
Choline/chemistry , Chromates/isolation & purification , Chromium/isolation & purification , Imidazoles/chemistry , Waste Products , Water Purification/methods , Adsorption , Anion Exchange Resins/chemistry , Arsenic/chemistry , Arsenic/isolation & purification , Carcinogens, Environmental/chemistry , Carcinogens, Environmental/isolation & purification , Cellulose , Chromates/chemistry , Chromium/chemistry , Cross-Linking Reagents/chemistry , Selenium/chemistry , Selenium/isolation & purification , Glycine max , Water Pollutants, Chemical/isolation & purification , Zea mays
8.
Bioresour Technol ; 96(6): 699-706, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15588772

ABSTRACT

Broiler manure produced at large concentrated facilities poses risks to the quality of water and public health. This study utilizes broiler litter and cake as source materials for granular activated carbon production and optimizes conditions for their production. Pelletized manure samples were pyrolyzed at 700 degrees C for 1 h followed by activation in an inert atmosphere under steam at different water flow rates, for a period ranging from 15 to 75 min. Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant, yields varied from 18% to 28%, surface area varied from 253 to 548 m2/g and copper ion adsorption varied from 0.13 to 1.92 mmol Cu2+/g carbon. Best overall performing carbons were steam activated for 45 min at 3 ml/min. Comparative studies with commercial carbons revealed the broiler cake-based carbon as having the highest copper ion efficiency.


Subject(s)
Carbon/chemistry , Manure/analysis , Adsorption , Agriculture , Animals , Charcoal , Chemical Phenomena , Chemistry, Physical , Chickens , Copper/chemistry , Refuse Disposal
9.
Water Res ; 38(4): 1062-8, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14769427

ABSTRACT

Filtration of drinking water by point-of-use (POU) or point-of-entry (POE) systems is becoming increasingly popular in the United States. Drinking water is filtered to remove both organic and inorganic contaminants. The objective of this study was to evaluate the use of granular activated carbon from nutshells (almond, English walnut, pecan) in a POU water filtration system to determine its effectiveness in removing select, potentially toxic metal ions, namely, copper (Cu2+), lead (Pb2+) or zinc (Zn2+) found in drinking water. The nutshell-based carbon system was designated "Envirofilter" and was compared to four commercial POU systems with brand names of BRITA, Omni Filter, PUR and Teledyne Water Pik. Eight prototype "Envirofilters", consisting of individual or binary mixtures of carbons made from acid-activated almond or pecan shells and steam-activated pecan or walnut shells were constructed and evaluated for adsorption of the three metal ions. The results indicated that a binary mixture of carbons from acid-activated almond and either steam-activated pecan or walnut shells were the most effective in removing these metals from drinking water of all the POU systems evaluated. Binary mixtures of acid-activated almond shell-based carbon with either steam-activated pecan shell- or walnut shell-based carbon removed nearly 100% of lead ion, 90-95% of copper ion and 80-90% of zinc ion. Overall the performance data on the "Envirofilters" suggest that these prototypes require less carbon than commercial filters to achieve the same metal adsorption efficiency and may also be a less expensive product.


Subject(s)
Copper/isolation & purification , Lead/isolation & purification , Water Pollutants/isolation & purification , Water Purification/methods , Zinc/isolation & purification , Adsorption , Biodegradation, Environmental , Carbon , Filtration , Nuts
10.
Bioresour Technol ; 85(2): 131-5, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12227536

ABSTRACT

The present study was designed to model the adsorption of geosmin from water under laboratory conditions using the Freundlich isotherm model. This model was used to compare the efficiency of sugarcane bagasse and pecan shell-based powdered activated carbon to the efficiency of a coal-based commercial activated carbon (Calgon Filtrasorb 400). When data were generated from Freundlich isotherms, Calgon Filtrasorb 400 had greater geosmin adsorption at all geosmin concentrations studied than the laboratory produced steam-activated pecan shell carbon, steam-activated bagasse carbon, and the CO2-activated pecan shell carbon. At geosmin concentrations < 0.07 microg/l for the phosphoric acid-activated pecan shell carbon and below 0.08 microg/l for a commercially produced steam-activated pecan shell carbon obtained from Scientific Carbons, these two carbons had a higher calculated geosmin adsorption than Filtrasorb 400. While the commercial carbon was more efficient than some laboratory prepared carbons at most geosmin concentrations, the results indicate that when the amount of geosmin was below the threshold level of human taste (about 0.10 microg/l), the phosphoric acid-activated pecan shell carbon and the Scientific Carbons sample were more efficient than Filtrasorb 400 at geosmin removal.


Subject(s)
Carbon/metabolism , Naphthols/chemistry , Naphthols/metabolism , Water Purification/methods , Adsorption , Agriculture , Carbon/chemistry , Temperature , Water/chemistry
11.
Bioresour Technol ; 84(2): 177-85, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12139335

ABSTRACT

The objectives of this study were to evaluate selected physical and chemical properties of agricultural byproduct-based activated carbons made from pecan shells and sugarcane bagasse, and compare those properties to a commercial coal-based activated carbon as well as to compare the adsorption efficiency of these carbons for geosmin. Comparison of the physical and chemical properties of pecan shell- and bagasse-based carbons to the commercial carbon, Calgon Filtrasorb 400, showed that pecan shell carbon, but not the bagasse carbon, compared favorably to Filtrasorb 400, especially in terms of surface area, bulk density, ash and attrition. A carbon dosage study done in a model system showed the amount of geosmin adsorbed to be greater for Filtrasorb 400 and the bagasse-based carbon at low carbon concentrations than for the pecan shell carbons, but geosmin adsorption was similar in all carbons at higher carbon dosages. Application of the Freundlich isotherm model to the adsorption data showed that carbons made by steam activation of pecan shells or sugarcane bagasse had geosmin adsorption characteristics most like those of the commercial carbon. In terms of physical, chemical and adsorptive properties, steam-activated pecan shell carbon most resembled the commercial carbon and has the potential to replace Filtrasorb 400 in applications involving removal of geosmin from aqueous environments.


Subject(s)
Carbon/chemistry , Naphthols/chemistry , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL
...