Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 151(5): 1097-112, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23178126

ABSTRACT

Microcephaly is a neurodevelopmental disorder causing significantly reduced cerebral cortex size. Many known microcephaly gene products localize to centrosomes, regulating cell fate and proliferation. Here, we identify and characterize a nuclear zinc finger protein, ZNF335/NIF-1, as a causative gene for severe microcephaly, small somatic size, and neonatal death. Znf335 null mice are embryonically lethal, and conditional knockout leads to severely reduced cortical size. RNA-interference and postmortem human studies show that ZNF335 is essential for neural progenitor self-renewal, neurogenesis, and neuronal differentiation. ZNF335 is a component of a vertebrate-specific, trithorax H3K4-methylation complex, directly regulating REST/NRSF, a master regulator of neural gene expression and cell fate, as well as other essential neural-specific genes. Our results reveal ZNF335 as an essential link between H3K4 complexes and REST/NRSF and provide the first direct genetic evidence that this pathway regulates human neurogenesis and neuronal differentiation.


Subject(s)
Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neural Stem Cells/metabolism , Neurogenesis , Nuclear Proteins/metabolism , Animals , Cell Differentiation , Cell Proliferation , DNA-Binding Proteins , Female , Gene Knockdown Techniques , Genes, Lethal , Histone-Lysine N-Methyltransferase , Humans , Male , Mice , Mice, Knockout , Microcephaly/metabolism , Multiprotein Complexes/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Repressor Proteins/metabolism , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...